000862152 001__ 862152
000862152 005__ 20240709094414.0
000862152 0247_ $$2doi$$a10.1016/j.ijfatigue.2019.03.005
000862152 0247_ $$2ISSN$$a0142-1123
000862152 0247_ $$2ISSN$$a1879-3452
000862152 0247_ $$2WOS$$aWOS:000470940100027
000862152 0247_ $$2Handle$$a2128/24797
000862152 037__ $$aFZJ-2019-02506
000862152 082__ $$a600
000862152 1001_ $$0P:(DE-Juel1)174435$$aFischer, T.$$b0$$eCorresponding author
000862152 245__ $$aImpact of frequency, hold time and atmosphere on creep-fatigue of a 9–12% Cr steel from 300 °C−600 °C
000862152 260__ $$aOxford$$bElsevier$$c2019
000862152 3367_ $$2DRIVER$$aarticle
000862152 3367_ $$2DataCite$$aOutput Types/Journal article
000862152 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554723426_28482
000862152 3367_ $$2BibTeX$$aARTICLE
000862152 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862152 3367_ $$00$$2EndNote$$aJournal Article
000862152 520__ $$aIn this study the impact of frequency or rather hold time and atmosphere on the transition from fatigue dominated crack growth to creep fatigue of the ferritic/martensitic steel X20CrMoV12-1 was investigated from 300 °C−600 °C. This temperature range is most important for power plants operated in a flexible manner. Due to the increased share of renewable sources of energy, modern thermal power plants must be operated in a flexible manner to compensate fluctuating power supply from renewables. More damaging loading scenarios, including frequent start-up and shut-down cycles as well as load fluctuations, occur much more frequently than in the past as a consequence. Fatigue damage becomes more and more important, while creep damage reduces due to shorter full power operation durations. Furthermore, loss of passivation by fatigue induced cracking and delamination of protective oxide layers may constitute strong interdependencies of increased cyclic operation and steam oxidation resistance. This results in the necessity for a innovative surveillance concepts including operation mode dependent inspection intervals of thermal power plants. Application of a damage tolerance concept, based on fracture mechanics, can help to improve remaining life assessment of existing and fatigue tolerant design of future power plants. In order to develop codes for flexibly operated components, based on damage tolerance analysis by linear elastic fracture mechanics, its validity range and especially its limitation have to be evaluated first. The study has shown that the transition from pure fatigue to creep fatigue interaction begins at 500 °C and 3.33 × 10−3 Hz (300 s hold time). Furthermore this transition was found to be independent from steam atmosphere. The corresponding fracture mechanisms were investigated in detail.
000862152 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000862152 588__ $$aDataset connected to CrossRef
000862152 7001_ $$0P:(DE-Juel1)129742$$aKuhn, B.$$b1
000862152 773__ $$0PERI:(DE-600)2013377-7$$a10.1016/j.ijfatigue.2019.03.005$$gVol. 124, p. 288 - 302$$p288 - 302$$tInternational journal of fatigue$$v124$$x0142-1123$$y2019
000862152 8564_ $$uhttps://juser.fz-juelich.de/record/862152/files/Impact%20of%20frequency%20hold%20time%20and%20atmosphere%20on%20creep-fatigue%20of%20a%209%20-12%25%20Cr%20steel%20from%20300%20C%20-%20600%20C_.pdf$$yPublished on 2019-03-08. Available in OpenAccess from 2021-03-08.
000862152 8564_ $$uhttps://juser.fz-juelich.de/record/862152/files/Impact%20of%20frequency%20hold%20time%20and%20atmosphere%20on%20creep-fatigue%20of%20a%209%20-12%25%20Cr%20steel%20from%20300%20C%20-%20600%20C_.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-03-08. Available in OpenAccess from 2021-03-08.
000862152 909CO $$ooai:juser.fz-juelich.de:862152$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174435$$aForschungszentrum Jülich$$b0$$kFZJ
000862152 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129742$$aForschungszentrum Jülich$$b1$$kFZJ
000862152 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000862152 9141_ $$y2019
000862152 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862152 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000862152 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862152 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000862152 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J FATIGUE : 2017
000862152 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862152 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862152 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862152 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862152 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862152 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862152 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862152 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000862152 9801_ $$aFullTexts
000862152 980__ $$ajournal
000862152 980__ $$aVDB
000862152 980__ $$aUNRESTRICTED
000862152 980__ $$aI:(DE-Juel1)IEK-2-20101013
000862152 981__ $$aI:(DE-Juel1)IMD-1-20101013