001     862153
005     20210130001206.0
024 7 _ |a 10.1088/1367-2630/ab0781
|2 doi
024 7 _ |a 2128/22033
|2 Handle
024 7 _ |a WOS:000463553400003
|2 WOS
024 7 _ |a altmetric:58537518
|2 altmetric
037 _ _ |a FZJ-2019-02507
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Egger, Larissa
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Can photoemission tomography be useful for small, strongly-interacting adsorbate systems?
260 _ _ |a [London]
|c 2019
|b IOP73379
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1554723720_28481
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Molecular orbital tomography, also termed photoemission tomography, which considers the final state as a simple plane wave, has been very successful in describing the photoemisson distribution of large adsorbates on noble metal surfaces. Here, following a suggestion by Bradshaw and Woodruff (2015 New J. Phys. 17 013033), we consider a small and strongly-interacting system, benzene adsorbed on palladium (110), to consider the extent of the problems that can arise with the final state simplification. Our angle-resolved photoemission experiments, supported by density functional theory calculations, substantiate and refine the previously determined adsorption geometry and reveal an energetic splitting of the frontier π-orbital due to a symmetry breaking which has remained unnoticed before. We find that, despite the small size of benzene and the comparably strong interaction with palladium, the overall appearance of the photoemission angular distributions can basically be understood within a plane wave final state approximation and yields a deeper understanding of the electronic structure of the interface. There are, however, noticeable deviations between measured and simulated angular patterns which we ascribe to molecule-substrate interactions and effects beyond a plane-wave final state description.
536 _ _ |a 141 - Controlling Electron Charge-Based Phenomena (POF3-141)
|0 G:(DE-HGF)POF3-141
|c POF3-141
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kollmann, Bernd
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hurdax, Philipp
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lüftner, Daniel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Yang, Xiaosheng
|0 P:(DE-Juel1)165181
|b 4
700 1 _ |a Weiss, Simon
|0 P:(DE-Juel1)164597
|b 5
700 1 _ |a Gottwald, Alexander
|0 0000-0003-2810-7419
|b 6
700 1 _ |a Richter, Mathias
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Koller, Georg
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Soubatch, Serguei
|0 P:(DE-Juel1)128790
|b 9
700 1 _ |a Tautz, F Stefan
|0 P:(DE-Juel1)128791
|b 10
700 1 _ |a Puschnig, Peter
|0 0000-0002-8057-7795
|b 11
|e Corresponding author
700 1 _ |a Ramsey, Michael G
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.1088/1367-2630/ab0781
|g Vol. 21, no. 4, p. 043003 -
|0 PERI:(DE-600)1464444-7
|n 4
|p 043003 -
|t New journal of physics
|v 21
|y 2019
|x 1367-2630
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862153/files/Egger_2019_New_J._Phys._21_043003.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862153/files/Egger_2019_New_J._Phys._21_043003.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862153
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165181
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)128791
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-141
|2 G:(DE-HGF)POF3-100
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW J PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21