000862155 001__ 862155
000862155 005__ 20210130001207.0
000862155 0247_ $$2doi$$a10.1038/s41467-019-09472-8
000862155 0247_ $$2Handle$$a2128/22139
000862155 0247_ $$2pmid$$apmid:30952847
000862155 0247_ $$2WOS$$aWOS:000463472200021
000862155 0247_ $$2altmetric$$aaltmetric:58581528
000862155 037__ $$aFZJ-2019-02509
000862155 082__ $$a500
000862155 1001_ $$0P:(DE-HGF)0$$aMisas Villamil, Johana C.$$b0
000862155 245__ $$aA fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif
000862155 260__ $$a[London]$$bNature Publishing Group UK$$c2019
000862155 3367_ $$2DRIVER$$aarticle
000862155 3367_ $$2DataCite$$aOutput Types/Journal article
000862155 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1556610316_30379
000862155 3367_ $$2BibTeX$$aARTICLE
000862155 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862155 3367_ $$00$$2EndNote$$aJournal Article
000862155 520__ $$aUstilago maydis is a biotrophic fungus causing corn smut disease in maize. The secreted effector protein Pit2 is an inhibitor of papain-like cysteine proteases (PLCPs) essential for virulence. Pit2 inhibitory function relies on a conserved 14 amino acids motif (PID14). Here we show that synthetic PID14 peptides act more efficiently as PLCP inhibitors than the full-length Pit2 effector. Mass spectrometry shows processing of Pit2 by maize PLCPs, which releases an inhibitory core motif from the PID14 sequence. Mutational analysis demonstrates that two conserved residues are essential for Pit2 function. We propose that the Pit2 effector functions as a substrate mimicking molecule: Pit2 is a suitable substrate for apoplastic PLCPs and its processing releases the embedded inhibitor peptide, which in turn blocks PLCPs to modulate host immunity. Remarkably, the PID14 core motif is present in several plant associated fungi and bacteria, indicating the existence of a conserved microbial inhibitor of proteases (cMIP).
000862155 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000862155 536__ $$0G:(EU-Grant)639905$$aProPlantStress - Proteolytic processing in plant stress signal transduction and responses to abiotic stress and pathogen attack (639905)$$c639905$$fERC-2014-STG$$x1
000862155 588__ $$aDataset connected to CrossRef
000862155 7001_ $$0P:(DE-HGF)0$$aMueller, André N.$$b1
000862155 7001_ $$0P:(DE-Juel1)167325$$aDemir, Fatih$$b2
000862155 7001_ $$0P:(DE-HGF)0$$aMeyer, Ute$$b3
000862155 7001_ $$0P:(DE-HGF)0$$aÖkmen, Bilal$$b4
000862155 7001_ $$0P:(DE-HGF)0$$aSchulze Hüynck, Jan$$b5
000862155 7001_ $$0P:(DE-HGF)0$$aBreuer, Marlen$$b6
000862155 7001_ $$0P:(DE-HGF)0$$aDauben, Helen$$b7
000862155 7001_ $$0P:(DE-HGF)0$$aWin, Joe$$b8
000862155 7001_ $$0P:(DE-Juel1)162356$$aHuesgen, Pitter F.$$b9
000862155 7001_ $$00000-0002-7353-8456$$aDoehlemann, Gunther$$b10$$eCorresponding author
000862155 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-019-09472-8$$gVol. 10, no. 1, p. 1576$$n1$$p1576$$tNature Communications$$v10$$x2041-1723$$y2019
000862155 8564_ $$uhttps://juser.fz-juelich.de/record/862155/files/s41467-019-09472-8.pdf$$yOpenAccess
000862155 8564_ $$uhttps://juser.fz-juelich.de/record/862155/files/s41467-019-09472-8.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862155 909CO $$ooai:juser.fz-juelich.de:862155$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000862155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167325$$aForschungszentrum Jülich$$b2$$kFZJ
000862155 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162356$$aForschungszentrum Jülich$$b9$$kFZJ
000862155 9101_ $$0I:(DE-HGF)0$$60000-0002-7353-8456$$a Universität zu Köln$$b10
000862155 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000862155 9141_ $$y2019
000862155 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862155 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000862155 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862155 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000862155 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2017
000862155 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2017
000862155 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862155 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862155 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862155 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862155 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862155 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862155 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862155 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000862155 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000862155 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862155 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862155 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862155 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862155 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862155 920__ $$lyes
000862155 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x0
000862155 980__ $$ajournal
000862155 980__ $$aVDB
000862155 980__ $$aUNRESTRICTED
000862155 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000862155 9801_ $$aFullTexts