001     862180
005     20250129094358.0
024 7 _ |a 10.1103/PhysRevB.99.125144
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/22044
|2 Handle
024 7 _ |a WOS:000462898900009
|2 WOS
024 7 _ |a altmetric:58089684
|2 altmetric
037 _ _ |a FZJ-2019-02528
082 _ _ |a 530
100 1 _ |a Pásztorová, J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Relaxing Kondo-screened Kramers doublets in CeRhSi 3
260 _ _ |a Woodbury, NY
|c 2019
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1585999711_29482
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a CeRhSi3 is a superconductor under pressure coexisting with a weakly antiferromagnetic phase characterized by a Bragg peak at →q0=(∼0.2,0,0.5) [N. Aso et al., J. Magn. Magn. Mater. 310, 602 (2007)]. The compound is also a heavy-fermion material with a large specific heat coefficient γ=110 mJ mol−1K−2 and a high Kondo temperature of TK=50 K, indicating CeRhSi3 is in a strongly Kondo screened state. We apply high-resolution neutron spectroscopy to investigate the magnetic fluctuations in the normal phase, at ambient pressures, and at low temperatures. We measure a commensurate dynamic response centered around the →Q=(0,0,2) position that gradually evolves to H∼0.2 with decreasing temperature and/or energy transfers. The response is broadened both in momentum and energy and is not reminiscent of sharp spin wave excitations found in insulating magnets where the electrons are localized. We parametrize the excitation spectrum and temperature dependence using a heuristic model utilizing the random-phase approximation to couple relaxing Ce3+ ground-state Kramers doublets with a Kondo-like dynamic response. With a Ruderman-Kittel-Kasuya-Yosida exchange interaction within the ab plane and an increasing single-site susceptibility, we can qualitatively reproduce the neutron spectroscopic results in CeRhSi3 and, namely, the trade-off between scattering at commensurate and incommensurate positions. We suggest that the antiferromagnetic phase in CeRhSi3 is driven by weakly correlated relaxing localized Kramers doublets and that CeRhSi3 at ambient pressures is on the border between a Rudderman-Kittel-Yosida antiferromagnetic state and a Kondo-screened phase where static magnetism is predominately absent.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 1
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 2
536 _ _ |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)
|0 G:(DE-HGF)POF3-6213
|c POF3-621
|f POF III
|x 3
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 4
542 _ _ |i 2019-03-25
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
542 _ _ |i 2020-03-24
|2 Crossref
|u https://link.aps.org/licenses/aps-default-accepted-manuscript-license
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e PANDA: Cold three axes spectrometer
|f SR2
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)PANDA-20140101
|5 EXP:(DE-MLZ)PANDA-20140101
|6 EXP:(DE-MLZ)SR2-20140101
|x 0
693 _ _ |0 EXP:(DE-Juel1)ILL-IN12-20150421
|5 EXP:(DE-Juel1)ILL-IN12-20150421
|e ILL-IN12: Cold neutron 3-axis spectrometer
|x 1
700 1 _ |a Howell, A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Songvilay, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sarte, P. M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rodriguez-Rivera, J. A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Arévalo-López, A. M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schmalzl, K.
|0 P:(DE-Juel1)130943
|b 6
700 1 _ |a Schneidewind, A.
|0 P:(DE-Juel1)156579
|b 7
700 1 _ |a Dunsiger, S. R.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Singh, D. K.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Petrovic, C.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Hu, R.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Stock, C.
|0 P:(DE-HGF)0
|b 12
773 1 8 |a 10.1103/physrevb.99.125144
|b American Physical Society (APS)
|d 2019-03-25
|n 12
|p 125144
|3 journal-article
|2 Crossref
|t Physical Review B
|v 99
|y 2019
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.99.125144
|g Vol. 99, no. 12, p. 125144
|0 PERI:(DE-600)2844160-6
|n 12
|p 125144
|t Physical review / B
|v 99
|y 2019
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/862180/files/PhysRevB.99.125144.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/862180/files/PhysRevB.99.125144.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:862180
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130943
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156579
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6213
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 4
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-ILL-20110128
|k JCNS-ILL
|l JCNS-ILL
|x 3
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 4
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)JCNS-ILL-20110128
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
999 C 5 |a 10.1103/RevModPhys.56.755
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.81.1551
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.057002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/27838
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys1852
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.087001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.167207
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.35.5072
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.85.1048
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJS.76SA.166
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.67.3601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.76.051010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature07157
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/13/35/202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.205107
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jmmm.2006.10.247
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.247004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJS.80SA.SA019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.267006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.197001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.79.063701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.177204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJS.80SA.SA067
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/pssb.201200772
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.97.104513
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.76.124709
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys4092
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.037004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.104506
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jpcs.2008.06.085
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.77.054707
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.76.033706
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0081-1947(08)60517-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.4.718
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1660422
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s003390101144
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.127201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1191195
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.81.3531
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.81.054711
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.121.037003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.114.247005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.104418
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.350071
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.98.024415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.97.085150
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.205117
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.167.510
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/PTP.17.177
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/PTP.17.197
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.113.246403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms12774
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.174505
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.12113
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.58.917
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.187202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.80.5623
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.91.134427
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.104513
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 G. Shirane
|y 2004
|2 Crossref
|t Neutron Scattering with a Triple-Axis Spectrometer
|o G. Shirane Neutron Scattering with a Triple-Axis Spectrometer 2004
999 C 5 |a 10.1103/PhysRevB.78.184518
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.134416
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.97.184422
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.054506
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0378-4363(77)90190-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.28.5255
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.57.877
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.20.1969
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jmmm.2006.10.717
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.3938/jkps.62.2016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0038-1098(00)00421-X
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21