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offers highly desirable strength-failure-strain combinations [2]. The possibility to control the process

tool temperature offers a vast amount of possible advances in process technology, and work pieces

with locally varying thermoelastic properties for a wide range of applications are one of the central

goals in this context. A challenge of central importance to the bainitic press hardening process is the

understanding of the bainitic transformation.

The mechanism of the bainite transformation is the subject of ongoing debate for decades, see

e.g., [3–6]. The main controversy focuses on the following two arguments: (i) the nature of the bainitic

ferrite/retained austenite interface and its capacity to support the displacive mechanism of bainitic

ferrite growth and (ii) the role of carbon transport during the bainite transformation, i.e., whether or

not bainitic ferrite is initially supersaturated with carbon and then carbon partitioning takes place from

the bainitic ferrite. Within this publication, we will focus on the transport-governed regime, i.e., the

transformation is limited by carbon redistribution. The main branches of the scientific discussion about

the details of the transport-governed regime can be summarised as follows.

Considerations about the carbon partitioning published in [7, 8] suggest that the ferritic component

of bainitic microstructures can form with maximal carbon supersaturation, while the escape of carbon

from ferrite to austenite after transformation is the essential aspect of the carbon transport.

Alternatively, the transport of carbon during diffusional transformation of austenite to ferrite under

metastable equilibrium conditions at the interface is also considered (e.g., [5]). An intermediate

scenario, where ferrite grows with a partial supersaturation of carbon, with the remaining carbon

partitioning into austenite or forming carbides, is described e.g., in [9–11]. All of these hypothesises

effectively consider the competition between carbon escape and interface migration at high

supersaturations, thus the transformation might exhibit a higher velocity than is expected by

equilibrium partitioning of carbon. For our investigations, we focus on a regime where the diffusional

transport of carbon from the supersaturated austenitic phase at local equilibrium is the rate-limiting

mechanism.

The following parts of this publication are organised in four sections; a basic theoretical treatment

of solid-solid transitions in the displacive and the diffuse-displacive case is given in Section 2. We

also introduce the basics of the boundary integral method, which is used for the investigations on the

terminal subunit growth regime.

In Section 3.1, we discuss the influence of coherency stresses and capillarity stresses on the growth

of banitic subunits of small radii in the initial growth regime of the diffusional-displacive transition.

In Section 3.2, we present calculations for the specific scenario of bainitic subunit growth

frustration, which results form the decreasing temperature during the continuous cooling of the

bainitic transformation.

In Section 4, we discuss the context of other related growth regimes also relevant to elastically

influenced solid-solid transformations.

2. Materials and method

The work in this article is based on theoretical work and aims at elementary aspects of growth

behaviour in bainitic subunits. As representative geometry, we present Figure 1.
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where L† is the adjoint operator of L and J̄(u,G) is a function of the diffusion field and the Green’s

function with derivations of order not higher than one in the case of the diffusion equation.

Apparently, when we integrate the Lagrange identity and have no volume inhomogeneities, the

integral contributions reduces to boundary terms. In our case, the inhomogeneity is the mass

conservation of carbon at the moving interface, as we discuss in the subsequent description of the

physical model. Finally, the whole description reduces to a fully interfacial problem as the obtained

symbolic solution expresses the value of the diffusion field on each point at the interface when the

local equilibrium condition is described, see also the following description of the physical model.

For the terminal growth regime, the basis of our considerations is a coupled model of diffusional

carbon transport and static elastic misfit stresses within the two adjoining phases, i.e., the parent

austenite and the growing ferrite phase, together with the physically necessary boundary conditions at

the progressing phase boundary. The diffusional transport is governed by a diffusion equation in the

bulk, complemented by the mass conservation condition and the Gibbs-Thompson condition of local

phase equilibrium. In total, we obtain the following three equations for the dimensionless carbon

concentration field u = (c − c0)/∆c, with c being the non-equilibrium carbon concentration field, c0 is

a reference concentration and ∆c = c
eq
γ − c

eq
α denoting the difference in the equilibrium carbon

concentrations of the γ-austenite and the α-ferrite phase at the respectively imposed constant

temperature

D∇2u = ∂u/∂t, (3)

υn = D~n∆∇u|int,

u|int = ∆ − dκ + TeqδF
el/Lm∆c.

By D we denote the carbon diffusion constant, Teq is the transition temperature, L is the effective latent

heat [24, 25]. The capillary length d is defined here as d = γTeq/Lm∆c, where γ is the surface energy,

κ is the interface curvature and the dimensionless undercooling is given by ∆ = (ceq − c0)/(cγ − cα).

The slope of the coexistence line is denoted by m = ‖dT/dc‖. In accordance with our previous studies

on displacive transformations, we choose the class of invariant plain strain transitions here, as it allows

for extended coherent interfaces. When we indicate the mother phase via α and the onsetting phase via

β, the elastic contribution to the local equilibrium equation is defined as

δFel = σ(0)

ik
ǫ

(β)

ik
−

E
[

(ǫ0ττ)
2 + (ǫ0ss)

2 + 2ν(ǫ0ττ)(ǫ
0
ss) + 2(1 − ν)(ǫ0sτ)2

]

2(1 − ν2)
. (4)

Here the indices ik refer to the components of the strain and eigenstrain tensors, with ss, sτ and ττ

denoting the two tangential components in natural coordinates. This is obtained by introduction of

the appropriate free energy and assuming phase and mechanical equilibrium at the coherent interface,

see [15] for details. We require that the eigenstrain tensor ǫ(0)

ik
allows to satisfy coherent interfaces,

the eigenstrain stress tensor σ(0)

ik
is the stress tensor corresponding to Hooke’s law for the eigenstrains

ǫ(0)

ik
. Therefore, the first contribution on the r.h.s of Eq 4 involves the eigenstresses and the strains in

the austenitic phase. Following this brief introduction of our theoretical basis, we continue with the

discussion of the initial growth regime.

The physical picture emerging from these equations is clear. The propagation of the interface

releases carbon proportional to the normal component of the growth velocity υn, while the local
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transition point itself depends on the interfacial stresses arising from the coherent lattice

transformation and the curvature. The transport of the carbon from the interface limits the

propagation velocity. We note that this model represents the coupling of the elastostatic and the

diffusional problem via the local equilibrium condition for the carbon concentration at the

transformation interface alone.

3. Results and discussion

3.1. Pattern selection in the initial growth regime subject to elastic softening

The transformation of austenite to bainite involves displacive deformations of the matrix, diffusion

controlled growth of bainitic sheaves and the precipitation of carbides inside the ferrite (lower bainite)

or inside the austenite (upper bainite). A successful prediction of the transformation kinetics requires

consideration of the complex interaction of these processes: elastic/plastic deformation, carbon

partitioning and carbide precipitation. The local driving force for the transformation depends

sensitively on the carbon concentration, the local misfit-stresses and the temperature. During the

transformation, the carbon in the supersaturated bainitic-ferrite can either be released in the

surrounding austenite phase or be captured by the embedded carbides, which are competitive for the

solute atoms.

When we focus on the very initial regime of the solid solid transformation, involving a nucleus

of nanometer size, the size dependence of the elastic parameters in this stage can lead to substantial

elastic softening of the growing phase. Furthermore, on this scale, the bulk crystal symmetry structure

can be suppressed due to the dominance of interfacial effects on the overall energy of the nucleus.

Therefore, we approximate the growing inclusion by concerning only the hydrostatic, isotropic elastic

response to stresses from the surrounding bulk phase. The assumption of isotropic elasticity exhibits

the lowest expected error on the real elastic behaviour of the nucleus prior any information on the early

nm growth regime. Thus, we consider this initial stage in analogy to the argumentation given in [12],

which provides an approximative and analytically accessible description of the growth problem.

We assume that the new phase, which contains N particles and occupies a volume W, is

homogeneous with chemical potential µ and a pressure P (we assume that the external pressure is

zero). Because of the conservation of mass, we have the following expression for the volume of the

melt:

W = Nvα = Nvγ +

∫

unds (5)

where vα and vγ are the atomic volumes of the ferritic and austenitic phases, and the last term

describes the change in the volume of the nucleus upon deformation (un is the normal component of

the displacement vector at the interface). The subunit is assumed to be a very oblate lentil of radius R

and height h≪ R. In a first approximation, we can ignore the height of the lentil in solving the elastic

problem. In this case the pressure P, exerted on the nucleus by the retained austenite, is given on a

circular plane cut within the radius R. This problem is equivalent to a crack problem and its solution

provides the normal component of the displacement vector at the interface, see [26]. In this scenario,

the equilibrium Gibbs-Thomson condition at the interface reads as [27, 28]

µ(P) = vα















f 0
γ + P +

σ̄2
rr + σ̄

2
φφ − 2νσ̄rrσ̄φφ

2E
+ γκ















(6)
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Here f 0
γ is the free energy density of the undeformed (initial) crystal and we have introduced cylindrical

coordinates, σ̄ik is a normalised stress tensor, ν and E are the Poisson and Young coefficients, γ is the

interfacial energy and κ is the curvature of the interface (considered positive for a convex solid). To

focus on the role of the elastic effects of the transformation, Eq 6 approximates the iron chemical

potential by reducing contributions depending on the carbon content to an effective lattice expansion

which is taken into account via the atomic volumes vα, vβ.

Following the argumentation in [29] and [12] , the radius Rc of the critical nucleus is related to the

pressure P by the Griffith formula, leading to a relation ∆(R) = ∆(1 −
√

1 − Rc/R) = uInt for the

interfacial equilibrium condition. This relation together with mass conservation provides the

characteristic length scale ρ and the height h of the inclusion

h =
√

ρR (7)

ρ =
128γ(1 − ν2)v2

γ

9πE(vα − vγ)2
(8)

Apparently, these expressions remain valid only when the elastic softening is pronounced and the

assumption that neglecting the nonydrostatic aspect of the elastic behaviour in the inclusions is

acceptable. However, within the approximative validity of these assumptions, we can consider the

onset to be elastically dominated. The crucial point is the absence of any thermal quantities in ρ. This

indicates that the pattern is dominated by elastic effects in this early growth regime. After the shape

undergoes a Mullins-Sekerka instability, which takes place as derived in [30], it grows via the coupled

diffusional-displacive mechanism, qualitatively comparable to the dendritic growth regime as we

described it in [19]. In the next section, we introduce the regime of frustrated growth of bainitic

subunits, which is represented by a limiting case of the elasto-chemical diffusion-limited growth,

i.e., diffusion-limited growth mediated by an elastic selection.

3.2. Elastic pattern selection in frustrated bainitic subunit growth: zero velocity limit

Within this section, we focus on the elasto-chemical diffusion-limited growth of a subunit in the

terminal regime of carbon transport frustration, i.e., where an effective reduction of the

thermodynamic driving force due to the size of the grown subunit can be assumed. The frustration of

the carbon transport within the retained austenite is related to the continuous decrease of the overall

temperature during the progression of the bainitic transformation. Upon a linear temperature decrease

the carbon diffusion coefficient undergoes an exponential decay, as it obeys an Arrhenius-type

temperature dependence. The combination of a reduced driving force and an exponentially decreasing

diffusion coefficient suggest to study the zero velocity or zero diffusion limit.

To take full advantage of our assumptions, the boundary integral method, as introduced in the

methods section, see Eq 3 and in [19], is most suitable. The resulting formulation of the problem

combines the governing equations of the elastostatic and transport problem into a closed representation

for the unknown boundary, y(x), and the tip radius of curvature R:

∆ − dκ

R
+

TeqcpδF
el

L2
=

p

π

∫ +∞

−∞
dx′exp[−p(y(x) − y(x′))]K0(pη(x, x′)). (9)

To simplify the representation, we introduce a splitting of the elastic contribution to the local

equilibrium into a constant, hysteresis contribution ∆el and the remaining, spatially varying

AIMS Materials Science Volume 6, Issue 1, 52–62.



58

contribution, for details we refer to [19]. Important here is to note that the Peclet number of the

problem depends on the net driving force which takes the elastic hysteresis into account, i.e.,

∆̃ = ∆ − ∆el =
√

pπexp(p)er f c(p). This includes that a strong elastic hysteresis leads to a

substantially reduced driving force for the transformation, and we use approximations for the

dependence of the effective driving force on the Peclet number and the Green’s function of the

problem as described in [19] to obtain the following representation:

−σκ + ∆el

p
Φ

[

σǫiku
(α)

ik
− Eǫ2B(−→x )

2(1 − υ2)

]

= −1

π

∫ +∞

−∞
dx′log















(x − x′)2 + (y(x) − y(x′))2

(x − x′)2 + (− x2

2
+ x′2

2
)2















1/2

. (10)

Here we define Φ = 2(1 − ν2)/(E(ǫ2yy + ǫ
2
zz + 2νǫyyǫzz)), function B(~x) includes the local contributions to

the elastic free energy difference. The stability parameter of classical dendritic growth is σ = d0/pR.

We note that the velocity and the radius of the asymptotically matching Ivantsov parabola are defined

as

υd

D
=

2

π2
σ∆̃4, (11)

R

d
=
π

σ∆̃2
. (12)

As mentioned, the specific scenario we apply the boundary integral formulation for is a scenario

of very slow diffusion, so that the interface propagates slowly. Then, the diffusion is sufficiently low

to have the elastic effects dominate the transition. In the case of very small ∆el/p, one shall exploit

the possibilities of analytical methods, e.g., apply the complex matching method which yielded the

solution of the classical dendritic problem, but for the limit of p/∆el ≪ 1, which represents the scenario

of transport and frustrated transformation in the subunits, analytical approaches in the aforementioned

spirit are not at hand, suggesting specific numerical consideration here.

Therefore, we approximate this frustrated transformation regime via the limit of zero velocity and

diffusion. Formally, we can reach the regime of a possibly negligible release of latent heat at the

interface when υ→ 0. The Peclet number is given for a fixed ∆̃ ≪ 1 as

υR

2D
= p ∼ ∆̃2, (13)

which shows that for a given radius of the subunit, i.e., if R(∆̃) ∼ 1, the limiting case of a decreasing

diffusion coefficient D → 0 is equivalent to υ → 0. As the exponential dependence of the carbon

diffusion coefficient on the temperature provides a pragmatically reasonable approximation to the

strong decay of carbon diffusion, we will consider if a scenario with R(∆̃) ∼ 1 can be predicted.

We introduce a representation of the problem which suits this approach, namely

− d

∆elR
κ + Φ[σǫiku

(α)

ik
− Eǫ2B(x, x′)

2(1 − ν2)
] = −1

π

p

∆el

∫ +∞

−∞
dx′log[

(x − x′)2 + (y(x) − y(x′))2

(x − x′)2 + (− x2

2
+ x′2

2
)2

]1/2. (14)

Φ =
2(1 − ν2)

Eǫ2(ǭ2yy + ǭ
2
zzǭyyǭ2zz)
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parameter on p/∆el would lead to scaling laws for the transformation velocity and the radius as

R ∼ 1

∆̃
, (18)

υ ∼ ∆̃3. (19)

Despite of the inconclusive numerical results for the zero velocity limit concerning a finite σel, the

results show that an elastically dominated terminal growth regime of the subunits is possible.

4. Conclusion

We presented our recent work on the possibilities of elastically dominated regimes in

diffusion-limited solid state transformations. Referencing the bainitic transformation, specifically the

scenario of sheaf growth via subunit growth into the retained austenite, the very initial and the

terminal growth regime are considered. For the early growth regime, we find that under strong

assumptions for the elastic softening and effective isotropy of the onsetting phase, the problem can be

considered analogous to a crack formation problem. This is in line with previously published

investigations on melt inclusion growth published in [29]. When the Mullins-Sekerka instability sets

the transition from this early, elastically governed growth regime to the coupled diffusive-displacive

growth regime, described in [15, 16, 18, 19], the transport of carbon in the retained austenite is

assumed to be the limiting factor of subunit growth. Taking into account the decrease of the carbon

diffusion coefficient with decreasing temperature suggests to consider the effect of a reduced diffusion

coefficient. In combination with elastically frustrated growth, i.e., reduction of the effective driving

force, the reduced diffusion coefficient suggests to study a zero velocity limit. The presented

numerical results show the possibility of an elastically dominated terminal growth regime of subunits.
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