000862188 001__ 862188
000862188 005__ 20210130001215.0
000862188 0247_ $$2doi$$a10.1039/C8NR08943D
000862188 0247_ $$2ISSN$$a2040-3364
000862188 0247_ $$2ISSN$$a2040-3372
000862188 0247_ $$2pmid$$apmid:30631877
000862188 0247_ $$2WOS$$aWOS:000459910900029
000862188 0247_ $$2altmetric$$aaltmetric:53786036
000862188 037__ $$aFZJ-2019-02536
000862188 041__ $$aEnglish
000862188 082__ $$a600
000862188 1001_ $$0P:(DE-Juel1)165989$$aFelter, Janina$$b0$$eCorresponding author
000862188 245__ $$aTwo-dimensional growth of dendritic islands of NTCDA on Cu(001) studied in real time
000862188 260__ $$aCambridge$$bRSC Publ.$$c2019
000862188 3367_ $$2DRIVER$$aarticle
000862188 3367_ $$2DataCite$$aOutput Types/Journal article
000862188 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554811696_25396
000862188 3367_ $$2BibTeX$$aARTICLE
000862188 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862188 3367_ $$00$$2EndNote$$aJournal Article
000862188 520__ $$aThe success of future organic electronic devices distinctively depends on the electronic and geometric properties of thin organic films. Although obviously these properties are strongly influenced by the growth mechanisms, real time growth studies are relatively rare since not many experimental techniques exist that allow in situ studies in ultra high vacuum. In this context, we investigated the prototypical system 1,4,5,8-naphtalene-tetracarboxylic-dianhydride (NTCDA) on Cu(001). We used low-energy electron microscopy (LEEM) for the real-time growth study, and a variety of other techniques for investigating the geometric and electronic structure. While for similar model systems well known and well characterized growth modi occur (e.g., compact, well ordered islands or disordered, gas-like layers), for NTCDA/Cu(001) we observe the growth of dendrite-like, fractal structures. The dendritic structures arise from a strongly preferred one-dimensional growth mode forming a long-range ordered network of thin molecular chains spanning over the entire surface already at small coverages. Later in the growth process, the voids in the network structure are incrementally filled. These results are very unexpected for such a simple adsorbate system consisting of well investigated components, the properties of which were believed to be already well understood. We explain this unexpected behavior by a dendritic growth model that is supported by energetic arguments based on pair-potential calculations. These calculations give reason for the experimentally observed growth of one-dimensional structures, and therefore represent the key to a semi-quantitative understanding of this dendritic growth mode.
000862188 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000862188 588__ $$aDataset connected to CrossRef
000862188 7001_ $$0P:(DE-Juel1)161374$$aFranke, Markus$$b1
000862188 7001_ $$0P:(DE-Juel1)166426$$aWolters, Jana$$b2
000862188 7001_ $$0P:(DE-Juel1)145773$$aHenneke, Caroline$$b3
000862188 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b4
000862188 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C8NR08943D$$gVol. 11, no. 4, p. 1798 - 1812$$n4$$p1798 - 1812$$tNanoscale$$v11$$x2040-3372$$y2019
000862188 8564_ $$uhttps://juser.fz-juelich.de/record/862188/files/c8nr08943d.pdf$$yRestricted
000862188 8564_ $$uhttps://juser.fz-juelich.de/record/862188/files/c8nr08943d.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862188 909CO $$ooai:juser.fz-juelich.de:862188$$pVDB
000862188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165989$$aForschungszentrum Jülich$$b0$$kFZJ
000862188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161374$$aForschungszentrum Jülich$$b1$$kFZJ
000862188 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b4$$kFZJ
000862188 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000862188 9141_ $$y2019
000862188 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000862188 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2017
000862188 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862188 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862188 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862188 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862188 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862188 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862188 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862188 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862188 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2017
000862188 920__ $$lyes
000862188 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000862188 980__ $$ajournal
000862188 980__ $$aVDB
000862188 980__ $$aI:(DE-Juel1)PGI-3-20110106
000862188 980__ $$aUNRESTRICTED