000862190 001__ 862190
000862190 005__ 20210130001215.0
000862190 0247_ $$2doi$$a10.1021/acsnano.7b05828
000862190 0247_ $$2ISSN$$a1936-0851
000862190 0247_ $$2ISSN$$a1936-086X
000862190 0247_ $$2Handle$$a2128/22046
000862190 0247_ $$2pmid$$apmid:28902494
000862190 0247_ $$2WOS$$aWOS:000413992800097
000862190 037__ $$aFZJ-2019-02538
000862190 041__ $$aEnglish
000862190 082__ $$a540
000862190 1001_ $$0P:(DE-HGF)0$$aBaby, Anu$$b0
000862190 245__ $$aFully Atomistic Understanding of the Electronic and Optical Properties of a Prototypical Doped Charge-Transfer Interface
000862190 260__ $$aWashington, DC$$bSoc.$$c2017
000862190 3367_ $$2DRIVER$$aarticle
000862190 3367_ $$2DataCite$$aOutput Types/Journal article
000862190 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554812343_25396
000862190 3367_ $$2BibTeX$$aARTICLE
000862190 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862190 3367_ $$00$$2EndNote$$aJournal Article
000862190 520__ $$aThe current study generates profound atomistic insights into doping-induced changes of the optical and electronic properties of the prototypical PTCDA/Ag(111) interface. For doping K atoms are used, as KxPTCDA/Ag(111) has the distinct advantage of forming well-defined stoichiometric phases. To arrive at a conclusive, unambiguous, and fully atomistic understanding of the interface properties, we combine state-of-the-art density-functional theory calculations with optical differential reflectance data, photoelectron spectra, and X-ray standing wave measurements. In combination with the full structural characterization of the KxPTCDA/Ag(111) interface by low-energy electron diffraction and scanning tunneling microscopy experiments (ACS Nano 2016, 10, 2365–2374), the present comprehensive study provides access to a fully characterized reference system for a well-defined metal–organic interface in the presence of dopant atoms, which can serve as an ideal benchmark for future research and applications. The combination of the employed complementary techniques allows us to understand the peculiarities of the optical spectra of K2PTCDA/Ag(111) and their counterintuitive similarity to those of neutral PTCDA layers. They also clearly describe the transition from a metallic character of the (pristine) adsorbed PTCDA layer on Ag(111) to a semiconducting state upon doping, which is the opposite of the effect (degenerate) doping usually has on semiconducting materials. All experimental and theoretical efforts also unanimously reveal a reduced electronic coupling between the adsorbate and the substrate, which goes hand in hand with an increasing adsorption distance of the PTCDA molecules caused by a bending of their carboxylic oxygens away from the substrate and toward the potassium atoms.
000862190 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000862190 588__ $$aDataset connected to CrossRef
000862190 7001_ $$0P:(DE-HGF)0$$aGruenewald, Marco$$b1
000862190 7001_ $$0P:(DE-HGF)0$$aZwick, Christian$$b2
000862190 7001_ $$0P:(DE-HGF)0$$aOtto, Felix$$b3
000862190 7001_ $$00000-0003-0969-9180$$aForker, Roman$$b4
000862190 7001_ $$0P:(DE-Juel1)161411$$avan Straaten, Gerben$$b5
000862190 7001_ $$0P:(DE-Juel1)161374$$aFranke, Markus$$b6$$ufzj
000862190 7001_ $$0P:(DE-Juel1)139025$$aStadtmüller, Benjamin$$b7
000862190 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b8$$ufzj
000862190 7001_ $$0P:(DE-HGF)0$$aBrivio, Gian Paolo$$b9
000862190 7001_ $$00000-0003-1077-7596$$aFratesi, Guido$$b10
000862190 7001_ $$0P:(DE-HGF)0$$aFritz, Torsten$$b11
000862190 7001_ $$00000-0002-6502-1721$$aZojer, Egbert$$b12$$eCorresponding author
000862190 773__ $$0PERI:(DE-600)2383064-5$$a10.1021/acsnano.7b05828$$gVol. 11, no. 10, p. 10495 - 10508$$n10$$p10495 - 10508$$tACS nano$$v11$$x1936-086X$$y2017
000862190 8564_ $$uhttps://juser.fz-juelich.de/record/862190/files/acsnano.7b05828.pdf$$yOpenAccess
000862190 8564_ $$uhttps://juser.fz-juelich.de/record/862190/files/acsnano.7b05828.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862190 909CO $$ooai:juser.fz-juelich.de:862190$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161374$$aForschungszentrum Jülich$$b6$$kFZJ
000862190 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b8$$kFZJ
000862190 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000862190 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862190 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000862190 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS NANO : 2017
000862190 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS NANO : 2017
000862190 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862190 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862190 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862190 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862190 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862190 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862190 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862190 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862190 920__ $$lyes
000862190 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000862190 980__ $$ajournal
000862190 980__ $$aVDB
000862190 980__ $$aUNRESTRICTED
000862190 980__ $$aI:(DE-Juel1)PGI-3-20110106
000862190 9801_ $$aFullTexts