001     862190
005     20210130001215.0
024 7 _ |a 10.1021/acsnano.7b05828
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a 2128/22046
|2 Handle
024 7 _ |a pmid:28902494
|2 pmid
024 7 _ |a WOS:000413992800097
|2 WOS
037 _ _ |a FZJ-2019-02538
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Baby, Anu
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Fully Atomistic Understanding of the Electronic and Optical Properties of a Prototypical Doped Charge-Transfer Interface
260 _ _ |a Washington, DC
|c 2017
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1554812343_25396
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The current study generates profound atomistic insights into doping-induced changes of the optical and electronic properties of the prototypical PTCDA/Ag(111) interface. For doping K atoms are used, as KxPTCDA/Ag(111) has the distinct advantage of forming well-defined stoichiometric phases. To arrive at a conclusive, unambiguous, and fully atomistic understanding of the interface properties, we combine state-of-the-art density-functional theory calculations with optical differential reflectance data, photoelectron spectra, and X-ray standing wave measurements. In combination with the full structural characterization of the KxPTCDA/Ag(111) interface by low-energy electron diffraction and scanning tunneling microscopy experiments (ACS Nano 2016, 10, 2365–2374), the present comprehensive study provides access to a fully characterized reference system for a well-defined metal–organic interface in the presence of dopant atoms, which can serve as an ideal benchmark for future research and applications. The combination of the employed complementary techniques allows us to understand the peculiarities of the optical spectra of K2PTCDA/Ag(111) and their counterintuitive similarity to those of neutral PTCDA layers. They also clearly describe the transition from a metallic character of the (pristine) adsorbed PTCDA layer on Ag(111) to a semiconducting state upon doping, which is the opposite of the effect (degenerate) doping usually has on semiconducting materials. All experimental and theoretical efforts also unanimously reveal a reduced electronic coupling between the adsorbate and the substrate, which goes hand in hand with an increasing adsorption distance of the PTCDA molecules caused by a bending of their carboxylic oxygens away from the substrate and toward the potassium atoms.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gruenewald, Marco
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zwick, Christian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Otto, Felix
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Forker, Roman
|0 0000-0003-0969-9180
|b 4
700 1 _ |a van Straaten, Gerben
|0 P:(DE-Juel1)161411
|b 5
700 1 _ |a Franke, Markus
|0 P:(DE-Juel1)161374
|b 6
|u fzj
700 1 _ |a Stadtmüller, Benjamin
|0 P:(DE-Juel1)139025
|b 7
700 1 _ |a Kumpf, Christian
|0 P:(DE-Juel1)128774
|b 8
|u fzj
700 1 _ |a Brivio, Gian Paolo
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Fratesi, Guido
|0 0000-0003-1077-7596
|b 10
700 1 _ |a Fritz, Torsten
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Zojer, Egbert
|0 0000-0002-6502-1721
|b 12
|e Corresponding author
773 _ _ |a 10.1021/acsnano.7b05828
|g Vol. 11, no. 10, p. 10495 - 10508
|0 PERI:(DE-600)2383064-5
|n 10
|p 10495 - 10508
|t ACS nano
|v 11
|y 2017
|x 1936-086X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862190/files/acsnano.7b05828.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862190/files/acsnano.7b05828.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862190
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161374
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128774
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Free to read
|0 LIC:(DE-HGF)PublisherOA
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS NANO : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21