000862193 001__ 862193
000862193 005__ 20210130001217.0
000862193 0247_ $$2doi$$a10.1021/acs.nanolett.7b02882
000862193 0247_ $$2ISSN$$a1530-6984
000862193 0247_ $$2ISSN$$a1530-6992
000862193 0247_ $$2pmid$$apmid:28872317
000862193 0247_ $$2WOS$$aWOS:000413057500047
000862193 0247_ $$2altmetric$$aaltmetric:25009055
000862193 0247_ $$2Handle$$a2128/22755
000862193 037__ $$aFZJ-2019-02541
000862193 041__ $$aEnglish
000862193 082__ $$a660
000862193 1001_ $$0P:(DE-HGF)0$$aChoi, Deung-Jang$$b0
000862193 245__ $$aBuilding Complex Kondo Impurities by Manipulating Entangled Spin Chains
000862193 260__ $$aWashington, DC$$bACS Publ.$$c2017
000862193 3367_ $$2DRIVER$$aarticle
000862193 3367_ $$2DataCite$$aOutput Types/Journal article
000862193 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554812718_31077
000862193 3367_ $$2BibTeX$$aARTICLE
000862193 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862193 3367_ $$00$$2EndNote$$aJournal Article
000862193 520__ $$aThe creation of molecule-like structures in which magnetic atoms interact controllably is full of potential for the study of complex or strongly correlated systems. Here, we create spin chains in which a strongly correlated Kondo state emerges from magnetic coupling of transition-metal atoms. We build chains up to ten atoms in length by placing Fe and Mn atoms on a Cu2N surface with a scanning tunneling microscope. The atoms couple antiferromagnetically via superexchange interaction through the nitrogen atom network of the surface. The emergent Kondo resonance is spatially distributed along the chain. Its strength can be controlled by mixing atoms of different transition metal elements and manipulating their spatial distribution. We show that the Kondo screening of the full chain by the electrons of the nonmagnetic substrate depends on the interatomic entanglement of the spins in the chain, demonstrating the prerequisites to build and probe spatially extended strongly correlated nanostructures.
000862193 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000862193 588__ $$aDataset connected to CrossRef
000862193 7001_ $$00000-0001-7808-0395$$aRobles, Roberto$$b1
000862193 7001_ $$0P:(DE-HGF)0$$aYan, Shichao$$b2
000862193 7001_ $$0P:(DE-HGF)0$$aBurgess, Jacob A. J.$$b3
000862193 7001_ $$0P:(DE-HGF)0$$aRolf-Pissarczyk, Steffen$$b4
000862193 7001_ $$0P:(DE-HGF)0$$aGauyacq, Jean-Pierre$$b5
000862193 7001_ $$0P:(DE-HGF)0$$aLorente, Nicolás$$b6
000862193 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b7$$ufzj
000862193 7001_ $$00000-0002-1587-3678$$aLoth, Sebastian$$b8$$eCorresponding author
000862193 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.7b02882$$gVol. 17, no. 10, p. 6203 - 6209$$n10$$p6203 - 6209$$tNano letters$$v17$$x1530-6992$$y2017
000862193 8564_ $$uhttps://juser.fz-juelich.de/record/862193/files/acs.nanolett.7b02882.pdf$$yRestricted
000862193 8564_ $$uhttps://juser.fz-juelich.de/record/862193/files/acs.nanolett.7b02882.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862193 8564_ $$uhttps://juser.fz-juelich.de/record/862193/files/nanolett_a20107v17n10p6203.pdf$$yOpenAccess
000862193 8564_ $$uhttps://juser.fz-juelich.de/record/862193/files/nanolett_a20107v17n10p6203.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862193 909CO $$ooai:juser.fz-juelich.de:862193$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b7$$kFZJ
000862193 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000862193 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862193 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862193 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2017
000862193 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2017
000862193 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862193 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862193 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862193 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862193 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862193 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862193 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862193 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862193 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862193 920__ $$lyes
000862193 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000862193 980__ $$ajournal
000862193 980__ $$aVDB
000862193 980__ $$aUNRESTRICTED
000862193 980__ $$aI:(DE-Juel1)PGI-3-20110106
000862193 9801_ $$aFullTexts