000862194 001__ 862194
000862194 005__ 20210130001217.0
000862194 0247_ $$2doi$$a10.1126/sciadv.1701116
000862194 0247_ $$2Handle$$a2128/22047
000862194 0247_ $$2WOS$$aWOS:000411589900022
000862194 0247_ $$2altmetric$$aaltmetric:18156614
000862194 0247_ $$2pmid$$apmid:28819646
000862194 037__ $$aFZJ-2019-02542
000862194 041__ $$aEnglish
000862194 082__ $$a500
000862194 1001_ $$0P:(DE-HGF)0$$aSchlipf, Lukas$$b0
000862194 245__ $$aA molecular quantum spin network controlled by a single qubit
000862194 260__ $$aWashington, DC [u.a.]$$bAssoc.$$c2017
000862194 3367_ $$2DRIVER$$aarticle
000862194 3367_ $$2DataCite$$aOutput Types/Journal article
000862194 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554812855_31077
000862194 3367_ $$2BibTeX$$aARTICLE
000862194 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862194 3367_ $$00$$2EndNote$$aJournal Article
000862194 520__ $$aScalable quantum technologies require an unprecedented combination of precision and complexity for designing stable structures of well-controllable quantum systems on the nanoscale. It is a challenging task to find a suitable elementary building block, of which a quantum network can be comprised in a scalable way. We present the working principle of such a basic unit, engineered using molecular chemistry, whose collective control and readout are executed using a nitrogen vacancy (NV) center in diamond. The basic unit we investigate is a synthetic polyproline with electron spins localized on attached molecular side groups separated by a few nanometers. We demonstrate the collective readout and coherent manipulation of very few (≤ 6) of these S = 1/2 electronic spin systems and access their direct dipolar coupling tensor. Our results show that it is feasible to use spin-labeled peptides as a resource for a molecular qubit–based network, while at the same time providing simple optical readout of single quantum states through NV magnetometry. This work lays the foundation for building arbitrary quantum networks using well-established chemistry methods, which has many applications ranging from mapping distances in single molecules to quantum information processing.
000862194 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000862194 588__ $$aDataset connected to CrossRef
000862194 7001_ $$aOeckinghaus, Thomas$$b1
000862194 7001_ $$aXu, Kebiao$$b2
000862194 7001_ $$aDasari, Durga Bhaktavatsala Rao$$b3
000862194 7001_ $$00000-0002-0168-0226$$aZappe, Andrea$$b4
000862194 7001_ $$ade Oliveira, Felipe Fávaro$$b5
000862194 7001_ $$aKern, Bastian$$b6
000862194 7001_ $$aAzarkh, Mykhailo$$b7
000862194 7001_ $$aDrescher, Malte$$b8
000862194 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b9$$ufzj
000862194 7001_ $$aKern, Klaus$$b10
000862194 7001_ $$aWrachtrup, Jörg$$b11
000862194 7001_ $$00000-0002-8034-4000$$aFinkler, Amit$$b12$$eCorresponding author
000862194 773__ $$0PERI:(DE-600)2810933-8$$a10.1126/sciadv.1701116$$gVol. 3, no. 8, p. e1701116 -$$n8$$pe1701116 -$$tScience advances$$v3$$x2375-2548$$y2017
000862194 8564_ $$uhttps://juser.fz-juelich.de/record/862194/files/e1701116.full.pdf$$yOpenAccess
000862194 8564_ $$uhttps://juser.fz-juelich.de/record/862194/files/e1701116.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862194 909CO $$ooai:juser.fz-juelich.de:862194$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862194 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b9$$kFZJ
000862194 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000862194 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862194 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000862194 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI ADV : 2017
000862194 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSCI ADV : 2017
000862194 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862194 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862194 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862194 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862194 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862194 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862194 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000862194 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862194 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862194 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862194 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862194 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862194 920__ $$lyes
000862194 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000862194 980__ $$ajournal
000862194 980__ $$aVDB
000862194 980__ $$aUNRESTRICTED
000862194 980__ $$aI:(DE-Juel1)PGI-3-20110106
000862194 9801_ $$aFullTexts