000862196 001__ 862196
000862196 005__ 20210130001219.0
000862196 0247_ $$2doi$$a10.1126/sciadv.1602060
000862196 0247_ $$2Handle$$a2128/22588
000862196 0247_ $$2altmetric$$aaltmetric:18833170
000862196 0247_ $$2pmid$$apmid:28439541
000862196 0247_ $$2WOS$$aWOS:000401954800020
000862196 037__ $$aFZJ-2019-02544
000862196 041__ $$aEnglish
000862196 082__ $$a500
000862196 1001_ $$00000-0002-5363-3763$$aJacobson, Peter$$b0
000862196 245__ $$aPotential energy–driven spin manipulation via a controllable hydrogen ligand
000862196 260__ $$aWashington, DC [u.a.]$$bAssoc.$$c2017
000862196 3367_ $$2DRIVER$$aarticle
000862196 3367_ $$2DataCite$$aOutput Types/Journal article
000862196 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565855322_11415
000862196 3367_ $$2BibTeX$$aARTICLE
000862196 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862196 3367_ $$00$$2EndNote$$aJournal Article
000862196 520__ $$aSpin-bearing molecules can be stabilized on surfaces and in junctions with desirable properties, such as a net spin that can be adjusted by external stimuli. Using scanning probes, initial and final spin states can be deduced from topographic or spectroscopic data, but how the system transitions between these states is largely unknown. We address this question by manipulating the total spin of magnetic cobalt hydride complexes on a corrugated boron nitride surface with a hydrogen-functionalized scanning probe tip by simultaneously tracking force and conductance. When the additional hydrogen ligand is brought close to the cobalt monohydride, switching between a correlated S = 1/2 Kondo state, where host electrons screen the magnetic moment, and an S = 1 state with magnetocrystalline anisotropy is observed. We show that the total spin changes when the system is transferred onto a new potential energy surface that is defined by the position of the hydrogen in the junction. These results show how and why chemically functionalized tips are an effective tool to manipulate adatoms and molecules and a promising new method to selectively tune spin systems.
000862196 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000862196 588__ $$aDataset connected to CrossRef
000862196 7001_ $$0P:(DE-HGF)0$$aMuenks, Matthias$$b1
000862196 7001_ $$0P:(DE-HGF)0$$aLaskin, Gennadii$$b2
000862196 7001_ $$00000-0002-0443-5365$$aBrovko, Oleg$$b3
000862196 7001_ $$0P:(DE-HGF)0$$aStepanyuk, Valeri$$b4
000862196 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b5$$eCorresponding author
000862196 7001_ $$0P:(DE-HGF)0$$aKern, Klaus$$b6
000862196 773__ $$0PERI:(DE-600)2810933-8$$a10.1126/sciadv.1602060$$gVol. 3, no. 4, p. e1602060 -$$n4$$pe1602060 -$$tScience advances$$v3$$x2375-2548$$y2017
000862196 8564_ $$uhttps://juser.fz-juelich.de/record/862196/files/e1602060.full.pdf$$yOpenAccess
000862196 8564_ $$uhttps://juser.fz-juelich.de/record/862196/files/e1602060.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862196 909CO $$ooai:juser.fz-juelich.de:862196$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b5$$kFZJ
000862196 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000862196 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862196 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000862196 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI ADV : 2017
000862196 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSCI ADV : 2017
000862196 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862196 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862196 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862196 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862196 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862196 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862196 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000862196 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862196 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862196 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862196 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862196 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862196 920__ $$lyes
000862196 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000862196 980__ $$ajournal
000862196 980__ $$aVDB
000862196 980__ $$aUNRESTRICTED
000862196 980__ $$aI:(DE-Juel1)PGI-3-20110106
000862196 9801_ $$aFullTexts