000862202 001__ 862202
000862202 005__ 20240712100920.0
000862202 0247_ $$2doi$$a10.5194/acp-2019-108
000862202 0247_ $$2ISSN$$a1680-7367
000862202 0247_ $$2ISSN$$a1680-7375
000862202 0247_ $$2Handle$$a2128/22056
000862202 0247_ $$2altmetric$$aaltmetric:56425107
000862202 037__ $$aFZJ-2019-02550
000862202 082__ $$a550
000862202 1001_ $$0P:(DE-HGF)0$$aBraun, Marleen$$b0$$eCorresponding author
000862202 245__ $$aNitrification of the lowermost stratosphere during the exceptionally cold Arctic winter 2015/16
000862202 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000862202 3367_ $$2DRIVER$$aarticle
000862202 3367_ $$2DataCite$$aOutput Types/Journal article
000862202 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554816114_30946
000862202 3367_ $$2BibTeX$$aARTICLE
000862202 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862202 3367_ $$00$$2EndNote$$aJournal Article
000862202 520__ $$aThe Arctic winter 2015/16 was characterized by exceptionally cold stratospheric temperatures, favouring the formation of polar stratospheric clouds (PSCs) from mid-December until the end of February down to low stratospheric altitudes. Observations by GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) on HALO (High Altitude and LOng range research aircraft) during the PGS (POLSTRACC/GW-LCYLCE II/SALSA) campaign from December 2015 to March 2016 allow an investigation of the influence of denitrification on the lowermost stratosphere (LMS) with a high spatial resolution. For the first time vertical cross-sections of nitric acid (HNO3) along the flight track and tracer-tracer correlations derived from the GLORIA observations document detailed pictures of wide-spread nitrification of the Arctic LMS during the course of an entire winter. GLORIA observations show large-scale structures and local fine structures with strongly enhanced absolute HNO3 volume mixing ratios reaching up to 11 ppbv at altitudes of 11 km in January and nitrified filaments persisting until the middle of March. Narrow streaks of enhanced HNO3, observed in mid-January, are interpreted as regions recently nitrified by sublimating HNO3-containing particles. Overall, a nitrification of the LMS between 5.0 ppbv and 7.0 ppbv at potential temperature levels between 350 and 380 K is estimated. This extent of nitrification has never been observed before in the Arctic lowermost stratosphere. The GLORIA observations are compared with CLaMS (Chemical Lagrangian Model of the Stratosphere) simulations. The fundamental structures observed by GLORIA are well reproduced, but differences in the fine structures are diagnosed. Further, CLaMS predominantly underestimates the spatial extent of maximum HNO3 mixing ratios derived from the GLORIA observations as well as the enhancement at lower altitudes. Sensitivity simulations with CLaMS including (i) enhanced sedimentation rates in case of ice supersaturation (to resemble ice nucleation on NAT), (ii) a global temperature offset, (iii) modified growth rates (to resemble aspherical particles with larger surfaces) and (iv) temperature fluctuations (to resemble the impact of small-scale mountain waves) mostly improve the agreement with the GLORIA observations. The sensitivity simulations suggest that details of particle microphysics play a significant role for simulated LMS nitrification in January, while air subsidence, transport and mixing become increasingly important towards the end of the winter.
000862202 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000862202 588__ $$aDataset connected to CrossRef
000862202 7001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b1
000862202 7001_ $$0P:(DE-HGF)0$$aWoiwode, Wolfgang$$b2
000862202 7001_ $$00000-0002-9642-1955$$aJohansson, Sören$$b3
000862202 7001_ $$00000-0002-4174-9531$$aHöpfner, Michael$$b4
000862202 7001_ $$00000-0003-2016-2800$$aFriedl-Vallon, Felix$$b5
000862202 7001_ $$0P:(DE-HGF)0$$aOelhaf, Hermann$$b6
000862202 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b7
000862202 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b8$$ufzj
000862202 7001_ $$00000-0001-9608-7320$$aSinnhuber, Björn-Martin$$b9
000862202 7001_ $$00000-0001-5483-5669$$aZiereis, Helmut$$b10
000862202 7001_ $$0P:(DE-HGF)0$$aBraesicke, Peter$$b11
000862202 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2019-108$$gp. 1 - 25$$p1 - 25$$tAtmospheric chemistry and physics / Discussions Discussions [...]$$v108$$x1680-7375$$y2019
000862202 8564_ $$uhttps://juser.fz-juelich.de/record/862202/files/acp-2019-108.pdf$$yOpenAccess
000862202 8564_ $$uhttps://juser.fz-juelich.de/record/862202/files/acp-2019-108.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862202 909CO $$ooai:juser.fz-juelich.de:862202$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b1$$kFZJ
000862202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b7$$kFZJ
000862202 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b8$$kFZJ
000862202 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000862202 9141_ $$y2019
000862202 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862202 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862202 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862202 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862202 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000862202 9801_ $$aFullTexts
000862202 980__ $$ajournal
000862202 980__ $$aVDB
000862202 980__ $$aUNRESTRICTED
000862202 980__ $$aI:(DE-Juel1)IEK-7-20101013
000862202 981__ $$aI:(DE-Juel1)ICE-4-20101013