000862220 001__ 862220
000862220 005__ 20240708132725.0
000862220 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2019.01.045
000862220 0247_ $$2ISSN$$a0267-3762
000862220 0247_ $$2ISSN$$a1878-2892
000862220 0247_ $$2Handle$$a2128/24309
000862220 0247_ $$2altmetric$$aaltmetric:55795765
000862220 0247_ $$2WOS$$aWOS:000461530100013
000862220 037__ $$aFZJ-2019-02563
000862220 082__ $$a660
000862220 1001_ $$0P:(DE-HGF)0$$aBernardo, M. S.$$b0
000862220 245__ $$aElectric current activated sintering (ECAS) of undoped and titanium-doped BiFeO3 bulk ceramics with homogeneous microstructure
000862220 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000862220 3367_ $$2DRIVER$$aarticle
000862220 3367_ $$2DataCite$$aOutput Types/Journal article
000862220 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581406448_29861
000862220 3367_ $$2BibTeX$$aARTICLE
000862220 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862220 3367_ $$00$$2EndNote$$aJournal Article
000862220 520__ $$aBiFeO3 ceramics have been consolidated applying an electric current activated/assisted sintering (ECAS) methodology under different electrical conditions. DC experiments produce a flash sintering regime by which the bulk cylindrical specimens densify in a few seconds; however, this goes together with a strong localization of the current flow within the material, leading to a dramatic lack of microstructural and compositional homogeneity. The situation changes under the alternate field; a more gradual FAST (Field Assisted Sintering) event is produced which allows the attainment of an exceptional microstructural homogeneity through the whole sintered compacts. Upon Ti-doping the overall diffusivity of the system is delayed but the AC conditions again yield a remarkable microstructural homogeneity in the consolidated material, this time even at the nanoscale level. Accordingly, bulk BiFeO3 ceramics with homogeneous micro-nanostructure can be successfully prepared by an ECAS methodology and at lower temperatures and much shorter times than by conventional solid-state sintering.
000862220 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000862220 588__ $$aDataset connected to CrossRef
000862220 7001_ $$0P:(DE-HGF)0$$aJardiel, T.$$b1
000862220 7001_ $$0P:(DE-HGF)0$$aCaballero, A.$$b2
000862220 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b3
000862220 7001_ $$0P:(DE-Juel1)162271$$aGonzalez, Jesus$$b4
000862220 7001_ $$0P:(DE-HGF)0$$aPeiteado, M.$$b5$$eCorresponding author
000862220 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2019.01.045$$gVol. 39, no. 6, p. 2042 - 2049$$n6$$p2042 - 2049$$tJournal of the European Ceramic Society$$v39$$x0955-2219$$y2019
000862220 8564_ $$uhttps://juser.fz-juelich.de/record/862220/files/Electric%20current%20activated%20sintering%20%28ECAS%29%20of%20undoped%20and%20titanium-doped%20BiFeO3%20bulk%20ceramics%20with%20homogeneous%20microstructure.pdf$$yPublished on 2019-01-24. Available in OpenAccess from 2021-01-24.
000862220 8564_ $$uhttps://juser.fz-juelich.de/record/862220/files/Electric%20current%20activated%20sintering%20%28ECAS%29%20of%20undoped%20and%20titanium-doped%20BiFeO3%20bulk%20ceramics%20with%20homogeneous%20microstructure.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-01-24. Available in OpenAccess from 2021-01-24.
000862220 909CO $$ooai:juser.fz-juelich.de:862220$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b3$$kFZJ
000862220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b4$$kFZJ
000862220 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000862220 9141_ $$y2019
000862220 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862220 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000862220 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862220 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000862220 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2017
000862220 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862220 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862220 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862220 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862220 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862220 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862220 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862220 920__ $$lyes
000862220 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000862220 9801_ $$aFullTexts
000862220 980__ $$ajournal
000862220 980__ $$aVDB
000862220 980__ $$aUNRESTRICTED
000862220 980__ $$aI:(DE-Juel1)IEK-1-20101013
000862220 981__ $$aI:(DE-Juel1)IMD-2-20101013