000862222 001__ 862222
000862222 005__ 20240708132725.0
000862222 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2019.03.023
000862222 0247_ $$2ISSN$$a0267-3762
000862222 0247_ $$2ISSN$$a1878-2892
000862222 0247_ $$2WOS$$aWOS:000464771400014
000862222 037__ $$aFZJ-2019-02565
000862222 082__ $$a660
000862222 1001_ $$0P:(DE-Juel1)171464$$aPereira da Silva, João Gustavo$$b0$$eCorresponding author
000862222 245__ $$aSintering of a sodium-based NASICON electrolyte: A comparative study between cold, field assisted and conventional sintering methods
000862222 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000862222 3367_ $$2DRIVER$$aarticle
000862222 3367_ $$2DataCite$$aOutput Types/Journal article
000862222 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575528709_7072
000862222 3367_ $$2BibTeX$$aARTICLE
000862222 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862222 3367_ $$00$$2EndNote$$aJournal Article
000862222 520__ $$aScandium-substituted NASICON (Na3.4Sc0.4Zr1.6Si2PO12) is a promising electrolyte material for sodium-ion solid state batteries, with the highest ionic conductivity reported to date for a NASICON material. Low-temperature densification and control of microstructure are important factors to enable the low-cost manufacturing of such new battery type. Non-conventional sintering techniques such as Field Assisted Sintering Technology / Spark Plasma Sintering (FAST/SPS) and Cold Sintering are therefore investigated and compared to conventional free sintering. FAST/SPS enables to get rapidly dense samples (99% TD) at lower temperatures than the ones required by conventional sintering routes and with similar electrical properties. Cold sintering experiments, involving the addition of aqueous solutions as sintering aids and high mechanical pressure, enable a moderate densification, but at temperatures as low as 250 °C. Further heat treatments still below the conventional sintering temperature increased the achieved density and ionic conductivity.
000862222 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000862222 588__ $$aDataset connected to CrossRef
000862222 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b1$$ufzj
000862222 7001_ $$0P:(DE-HGF)0$$aLaptev, Alexander M.$$b2
000862222 7001_ $$0P:(DE-Juel1)162271$$aGonzalez-Julian, Jesus$$b3
000862222 7001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b4$$ufzj
000862222 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b5
000862222 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b6$$ufzj
000862222 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2019.03.023$$gVol. 39, no. 8, p. 2697 - 2702$$n8$$p2697 - 2702$$tJournal of the European Ceramic Society$$v39$$x0955-2219$$y2019
000862222 909CO $$ooai:juser.fz-juelich.de:862222$$pVDB
000862222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171464$$aForschungszentrum Jülich$$b0$$kFZJ
000862222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b1$$kFZJ
000862222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162271$$aForschungszentrum Jülich$$b3$$kFZJ
000862222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b4$$kFZJ
000862222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b5$$kFZJ
000862222 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b6$$kFZJ
000862222 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000862222 9141_ $$y2019
000862222 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862222 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2017
000862222 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862222 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862222 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862222 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862222 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862222 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862222 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862222 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862222 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000862222 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862222 920__ $$lyes
000862222 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000862222 980__ $$ajournal
000862222 980__ $$aVDB
000862222 980__ $$aI:(DE-Juel1)IEK-1-20101013
000862222 980__ $$aUNRESTRICTED
000862222 981__ $$aI:(DE-Juel1)IMD-2-20101013