000862225 001__ 862225
000862225 005__ 20240712113230.0
000862225 0247_ $$2doi$$a10.1002/adem.201801201
000862225 0247_ $$2ISSN$$a1438-1656
000862225 0247_ $$2ISSN$$a1527-2648
000862225 0247_ $$2Handle$$a2128/22394
000862225 0247_ $$2WOS$$aWOS:000472210900010
000862225 037__ $$aFZJ-2019-02568
000862225 041__ $$aEnglish
000862225 082__ $$a660
000862225 1001_ $$0P:(DE-HGF)0$$aHackemüller, Franz Josef$$b0
000862225 245__ $$aManufacturing of Large-Scale Titanium-Based Porous Transport Layers for Polymer Electrolyte Membrane Electrolysis by Tape Casting
000862225 260__ $$aFrankfurt, M.$$bDeutsche Gesellschaft für Materialkunde$$c2019
000862225 3367_ $$2DRIVER$$aarticle
000862225 3367_ $$2DataCite$$aOutput Types/Journal article
000862225 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670570942_30547
000862225 3367_ $$2BibTeX$$aARTICLE
000862225 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862225 3367_ $$00$$2EndNote$$aJournal Article
000862225 520__ $$aPolymer electrolyte membrane (PEM) electrolysis is an ideal method for the direct conversion of regenerative energy into hydrogen. A key component of PEM electrolysis stacks is the porous transport layer (PTL), which is usually comprised of titanium to withstand the harsh conditions of water splitting. This present study investigates the potential of tape casting as a means of mass producing titanium transport layers in a cost‐effective way. Gas‐atomized and hydrogenation–dehydrogenation titanium powders are used as starting materials. A systematic study is conducted to find processing parameters, which can demonstrate the potential of tape casting as a means of manufacturing large‐scale porous transport layers for PEM electrolyzers. For proof of concept, the dimensions of the porous transport layer are scaled up to 470 × 470 mm2 (at a thickness of 300 μm) and the component is successfully operated in an industrial electrolyzer under realistic conditions.
000862225 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000862225 588__ $$aDataset connected to CrossRef
000862225 7001_ $$0P:(DE-Juel1)165158$$aBorgardt, Elena$$b1$$ufzj
000862225 7001_ $$0P:(DE-Juel1)168373$$aPanchenko, Olha$$b2$$ufzj
000862225 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b3$$ufzj
000862225 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b4$$eCorresponding author$$ufzj
000862225 773__ $$0PERI:(DE-600)2016980-2$$a10.1002/adem.201801201$$gp. 1801201 -$$n6$$p1801201$$tAdvanced engineering materials$$v21$$x1438-1656$$y2019
000862225 8564_ $$uhttps://juser.fz-juelich.de/record/862225/files/2019%20Adv%20Eng%20Mat_Hackemueller%20et%20al.pdf$$yPublished on 2019-02-15. Available in OpenAccess from 2020-02-15.
000862225 8564_ $$uhttps://juser.fz-juelich.de/record/862225/files/Hackem-ller_et_al-2019-Advanced_Engineering_Materials.pdf$$yRestricted
000862225 8564_ $$uhttps://juser.fz-juelich.de/record/862225/files/2019%20Adv%20Eng%20Mat_Hackemueller%20et%20al.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-02-15. Available in OpenAccess from 2020-02-15.
000862225 8564_ $$uhttps://juser.fz-juelich.de/record/862225/files/Hackem-ller_et_al-2019-Advanced_Engineering_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862225 909CO $$ooai:juser.fz-juelich.de:862225$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165158$$aForschungszentrum Jülich$$b1$$kFZJ
000862225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168373$$aForschungszentrum Jülich$$b2$$kFZJ
000862225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b3$$kFZJ
000862225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b4$$kFZJ
000862225 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000862225 9141_ $$y2019
000862225 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862225 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000862225 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000862225 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENG MATER : 2017
000862225 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862225 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862225 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862225 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862225 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862225 920__ $$lyes
000862225 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000862225 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x1
000862225 9801_ $$aFullTexts
000862225 980__ $$ajournal
000862225 980__ $$aVDB
000862225 980__ $$aI:(DE-Juel1)IEK-1-20101013
000862225 980__ $$aI:(DE-Juel1)IEK-14-20191129
000862225 980__ $$aUNRESTRICTED
000862225 981__ $$aI:(DE-Juel1)IET-4-20191129
000862225 981__ $$aI:(DE-Juel1)IMD-2-20101013