| Hauptseite > Publikationsdatenbank > Manufacturing of Large-Scale Titanium-Based Porous Transport Layers for Polymer Electrolyte Membrane Electrolysis by Tape Casting > print |
| 001 | 862225 | ||
| 005 | 20240712113230.0 | ||
| 024 | 7 | _ | |a 10.1002/adem.201801201 |2 doi |
| 024 | 7 | _ | |a 1438-1656 |2 ISSN |
| 024 | 7 | _ | |a 1527-2648 |2 ISSN |
| 024 | 7 | _ | |a 2128/22394 |2 Handle |
| 024 | 7 | _ | |a WOS:000472210900010 |2 WOS |
| 037 | _ | _ | |a FZJ-2019-02568 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 660 |
| 100 | 1 | _ | |a Hackemüller, Franz Josef |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Manufacturing of Large-Scale Titanium-Based Porous Transport Layers for Polymer Electrolyte Membrane Electrolysis by Tape Casting |
| 260 | _ | _ | |a Frankfurt, M. |c 2019 |b Deutsche Gesellschaft für Materialkunde |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1670570942_30547 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Polymer electrolyte membrane (PEM) electrolysis is an ideal method for the direct conversion of regenerative energy into hydrogen. A key component of PEM electrolysis stacks is the porous transport layer (PTL), which is usually comprised of titanium to withstand the harsh conditions of water splitting. This present study investigates the potential of tape casting as a means of mass producing titanium transport layers in a cost‐effective way. Gas‐atomized and hydrogenation–dehydrogenation titanium powders are used as starting materials. A systematic study is conducted to find processing parameters, which can demonstrate the potential of tape casting as a means of manufacturing large‐scale porous transport layers for PEM electrolyzers. For proof of concept, the dimensions of the porous transport layer are scaled up to 470 × 470 mm2 (at a thickness of 300 μm) and the component is successfully operated in an industrial electrolyzer under realistic conditions. |
| 536 | _ | _ | |a 134 - Electrolysis and Hydrogen (POF3-134) |0 G:(DE-HGF)POF3-134 |c POF3-134 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Borgardt, Elena |0 P:(DE-Juel1)165158 |b 1 |u fzj |
| 700 | 1 | _ | |a Panchenko, Olha |0 P:(DE-Juel1)168373 |b 2 |u fzj |
| 700 | 1 | _ | |a Müller, Martin |0 P:(DE-Juel1)129892 |b 3 |u fzj |
| 700 | 1 | _ | |a Bram, Martin |0 P:(DE-Juel1)129591 |b 4 |e Corresponding author |u fzj |
| 773 | _ | _ | |a 10.1002/adem.201801201 |g p. 1801201 - |0 PERI:(DE-600)2016980-2 |n 6 |p 1801201 |t Advanced engineering materials |v 21 |y 2019 |x 1438-1656 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/862225/files/2019%20Adv%20Eng%20Mat_Hackemueller%20et%20al.pdf |y Published on 2019-02-15. Available in OpenAccess from 2020-02-15. |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/862225/files/Hackem-ller_et_al-2019-Advanced_Engineering_Materials.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/862225/files/2019%20Adv%20Eng%20Mat_Hackemueller%20et%20al.pdf?subformat=pdfa |x pdfa |y Published on 2019-02-15. Available in OpenAccess from 2020-02-15. |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/862225/files/Hackem-ller_et_al-2019-Advanced_Engineering_Materials.pdf?subformat=pdfa |x pdfa |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:862225 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)165158 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)168373 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129892 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129591 |
| 913 | 1 | _ | |a DE-HGF |b Energie |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-134 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Electrolysis and Hydrogen |x 0 |
| 914 | 1 | _ | |y 2019 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ENG MATER : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-14-20191129 |k IEK-14 |l Elektrochemische Verfahrenstechnik |x 1 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-14-20191129 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IET-4-20191129 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|