001     862225
005     20240712113230.0
024 7 _ |a 10.1002/adem.201801201
|2 doi
024 7 _ |a 1438-1656
|2 ISSN
024 7 _ |a 1527-2648
|2 ISSN
024 7 _ |a 2128/22394
|2 Handle
024 7 _ |a WOS:000472210900010
|2 WOS
037 _ _ |a FZJ-2019-02568
041 _ _ |a English
082 _ _ |a 660
100 1 _ |a Hackemüller, Franz Josef
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Manufacturing of Large-Scale Titanium-Based Porous Transport Layers for Polymer Electrolyte Membrane Electrolysis by Tape Casting
260 _ _ |a Frankfurt, M.
|c 2019
|b Deutsche Gesellschaft für Materialkunde
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670570942_30547
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polymer electrolyte membrane (PEM) electrolysis is an ideal method for the direct conversion of regenerative energy into hydrogen. A key component of PEM electrolysis stacks is the porous transport layer (PTL), which is usually comprised of titanium to withstand the harsh conditions of water splitting. This present study investigates the potential of tape casting as a means of mass producing titanium transport layers in a cost‐effective way. Gas‐atomized and hydrogenation–dehydrogenation titanium powders are used as starting materials. A systematic study is conducted to find processing parameters, which can demonstrate the potential of tape casting as a means of manufacturing large‐scale porous transport layers for PEM electrolyzers. For proof of concept, the dimensions of the porous transport layer are scaled up to 470 × 470 mm2 (at a thickness of 300 μm) and the component is successfully operated in an industrial electrolyzer under realistic conditions.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Borgardt, Elena
|0 P:(DE-Juel1)165158
|b 1
|u fzj
700 1 _ |a Panchenko, Olha
|0 P:(DE-Juel1)168373
|b 2
|u fzj
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 3
|u fzj
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/adem.201801201
|g p. 1801201 -
|0 PERI:(DE-600)2016980-2
|n 6
|p 1801201
|t Advanced engineering materials
|v 21
|y 2019
|x 1438-1656
856 4 _ |u https://juser.fz-juelich.de/record/862225/files/2019%20Adv%20Eng%20Mat_Hackemueller%20et%20al.pdf
|y Published on 2019-02-15. Available in OpenAccess from 2020-02-15.
856 4 _ |u https://juser.fz-juelich.de/record/862225/files/Hackem-ller_et_al-2019-Advanced_Engineering_Materials.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/862225/files/2019%20Adv%20Eng%20Mat_Hackemueller%20et%20al.pdf?subformat=pdfa
|x pdfa
|y Published on 2019-02-15. Available in OpenAccess from 2020-02-15.
856 4 _ |u https://juser.fz-juelich.de/record/862225/files/Hackem-ller_et_al-2019-Advanced_Engineering_Materials.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:862225
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168373
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129591
913 1 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrolysis and Hydrogen
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENG MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-4-20191129
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21