000862255 001__ 862255 000862255 005__ 20210130001241.0 000862255 0247_ $$2doi$$a10.1016/j.ultrasmedbio.2018.12.014 000862255 0247_ $$2ISSN$$a0301-5629 000862255 0247_ $$2ISSN$$a1879-291X 000862255 0247_ $$2Handle$$a2128/22082 000862255 0247_ $$2pmid$$apmid:30773375 000862255 0247_ $$2WOS$$aWOS:000464126800011 000862255 0247_ $$2altmetric$$aaltmetric:55665201 000862255 037__ $$aFZJ-2019-02597 000862255 082__ $$a570 000862255 1001_ $$0P:(DE-HGF)0$$ade Saint Victor, Marie$$b0$$eFirst author 000862255 245__ $$aSonothrombolysis with Magnetically Targeted Microbubbles 000862255 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019 000862255 3367_ $$2DRIVER$$aarticle 000862255 3367_ $$2DataCite$$aOutput Types/Journal article 000862255 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1586007413_29484 000862255 3367_ $$2BibTeX$$aARTICLE 000862255 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000862255 3367_ $$00$$2EndNote$$aJournal Article 000862255 520__ $$aMicrobubble-enhanced sonothrombolysis is a promising approach to increasing the tolerability and efficacy of current pharmacological treatments for ischemic stroke. Maintaining therapeutic concentrations of microbubbles and drugs at the clot site, however, poses a challenge. The objective of this study was to investigate the effect of magnetic microbubble targeting upon clot lysis rates in vitro. Retracted whole porcine blood clots were placed in a flow phantom of a partially occluded middle cerebral artery. The clots were treated with a combination of tissue plasminogen activator (0.75 µg/mL), magnetic microbubbles (∼107 microbubbles/mL) and ultrasound (0.5 MHz, 630-kPa peak rarefactional pressure, 0.2-Hz pulse repetition frequency, 2% duty cycle). Magnetic targeting was achieved using a single permanent magnet (0.08–0.38 T and 12-140 T/m in the region of the clot). The change in clot diameter was measured optically over the course of the experiment. Magnetic targeting produced a threefold average increase in lysis rates, and linear correlation was observed between lysis rate and total energy of acoustic emissions. 000862255 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0 000862255 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1 000862255 588__ $$aDataset connected to CrossRef 000862255 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0 000862255 65027 $$0V:(DE-MLZ)SciArea-190$$2V:(DE-HGF)$$aMedicine$$x1 000862255 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0 000862255 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0 000862255 7001_ $$0P:(DE-Juel1)172014$$aBarnsley, Lester C.$$b1 000862255 7001_ $$0P:(DE-HGF)0$$aCarugo, Dario$$b2 000862255 7001_ $$0P:(DE-HGF)0$$aOwen, Joshua$$b3 000862255 7001_ $$0P:(DE-HGF)0$$aCoussios, Constantin C.$$b4 000862255 7001_ $$00000-0003-3371-5929$$aStride, Eleanor$$b5$$eCorresponding author 000862255 773__ $$0PERI:(DE-600)1498918-9$$a10.1016/j.ultrasmedbio.2018.12.014$$gVol. 45, no. 5, p. 1151 - 1163$$n5$$p1151 - 1163$$tUltrasound in medicine & biology$$v45$$x0301-5629$$y2019 000862255 8564_ $$uhttps://juser.fz-juelich.de/record/862255/files/DESAINTVICTOR20191151.pdf$$yOpenAccess 000862255 8564_ $$uhttps://juser.fz-juelich.de/record/862255/files/DESAINTVICTOR20191151.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000862255 909CO $$ooai:juser.fz-juelich.de:862255$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire 000862255 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172014$$aForschungszentrum Jülich$$b1$$kFZJ 000862255 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0 000862255 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1 000862255 9141_ $$y2019 000862255 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000862255 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000862255 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000862255 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000862255 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRASOUND MED BIOL : 2017 000862255 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000862255 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000862255 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000862255 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000862255 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000862255 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000862255 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000862255 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine 000862255 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000862255 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000862255 920__ $$lyes 000862255 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0 000862255 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1 000862255 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2 000862255 980__ $$ajournal 000862255 980__ $$aVDB 000862255 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000862255 980__ $$aI:(DE-Juel1)JCNS-1-20110106 000862255 980__ $$aI:(DE-588b)4597118-3 000862255 980__ $$aUNRESTRICTED 000862255 9801_ $$aFullTexts