000862302 001__ 862302
000862302 005__ 20240711101511.0
000862302 0247_ $$2doi$$a10.1038/s41598-018-36683-8
000862302 0247_ $$2Handle$$a2128/22067
000862302 0247_ $$2pmid$$apmid:30718712
000862302 0247_ $$2WOS$$aWOS:000457616300204
000862302 0247_ $$2altmetric$$aaltmetric:58987685
000862302 037__ $$aFZJ-2019-02640
000862302 082__ $$a600
000862302 1001_ $$0P:(DE-HGF)0$$aNogueira, André E.$$b0
000862302 245__ $$aInsights into the role of CuO in the CO2 photoreduction process
000862302 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000862302 3367_ $$2DRIVER$$aarticle
000862302 3367_ $$2DataCite$$aOutput Types/Journal article
000862302 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1555075833_21854
000862302 3367_ $$2BibTeX$$aARTICLE
000862302 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862302 3367_ $$00$$2EndNote$$aJournal Article
000862302 520__ $$aThe CO2 photoreduction process to produce light hydrocarbons is known to be influenced by the presence of CuO nanoparticles, but the actual role of this material, whether as a catalyst or a reactant, has not yet been revealed. In this work, we investigate the role of CuO nanoparticles produced by a solvothermal method as a catalyst in CO2-saturated water reaction media under UV light, considering the effects of different electrolytes (Na2C2O4, KBrO3, and NaOH) and temperatures on nanoparticle phase and activity. The electrolyte strongly influenced product selectivity (NaOH led to evolution of CH4, Na2C2O4 to CO, and KBrO3 to O2) and induced CuO phase change. A long-term analysis of these processes indicated that during the initial steps, CuO acted as a reactant, rather than as a catalyst, and was converted to CuCO3.Cu(OH)2, while the as-converted material acted as a catalyst in CO2 photoreduction, with conversion values comparable to those reported in the literature.
000862302 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000862302 588__ $$aDataset connected to CrossRef
000862302 7001_ $$0P:(DE-HGF)0$$aOliveira, Jéssica A.$$b1
000862302 7001_ $$0P:(DE-HGF)0$$ada Silva, Gelson T. S. T.$$b2
000862302 7001_ $$0P:(DE-Juel1)177079$$aRibeiro, Caue$$b3$$eCorresponding author
000862302 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-018-36683-8$$gVol. 9, no. 1, p. 1316$$n1$$p1316$$tScientific reports$$v9$$x2045-2322$$y2019
000862302 8564_ $$uhttps://juser.fz-juelich.de/record/862302/files/s41598-018-36683-8.pdf$$yOpenAccess
000862302 8564_ $$uhttps://juser.fz-juelich.de/record/862302/files/s41598-018-36683-8.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862302 909CO $$ooai:juser.fz-juelich.de:862302$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177079$$aForschungszentrum Jülich$$b3$$kFZJ
000862302 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000862302 9141_ $$y2019
000862302 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862302 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862302 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862302 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862302 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000862302 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000862302 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862302 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862302 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862302 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862302 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862302 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862302 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862302 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862302 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862302 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862302 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862302 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862302 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862302 920__ $$lyes
000862302 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000862302 9801_ $$aFullTexts
000862302 980__ $$ajournal
000862302 980__ $$aVDB
000862302 980__ $$aUNRESTRICTED
000862302 980__ $$aI:(DE-Juel1)IEK-3-20101013
000862302 981__ $$aI:(DE-Juel1)ICE-2-20101013