000862307 001__ 862307
000862307 005__ 20240711101427.0
000862307 0247_ $$2doi$$a10.1016/j.elecom.2019.02.005
000862307 0247_ $$2ISSN$$a1388-2481
000862307 0247_ $$2ISSN$$a1873-1902
000862307 0247_ $$2Handle$$a2128/22065
000862307 0247_ $$2WOS$$aWOS:000464134900007
000862307 037__ $$aFZJ-2019-02645
000862307 082__ $$a540
000862307 1001_ $$0P:(DE-HGF)0$$aReshetenko, Tatyana$$b0
000862307 245__ $$aOn the distribution of local current density along a PEM fuel cell cathode channel
000862307 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000862307 3367_ $$2DRIVER$$aarticle
000862307 3367_ $$2DataCite$$aOutput Types/Journal article
000862307 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1555066771_21855
000862307 3367_ $$2BibTeX$$aARTICLE
000862307 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862307 3367_ $$00$$2EndNote$$aJournal Article
000862307 520__ $$aWe report analysis of a recent model for local current density distribution along the air channel in a PEM fuel cell. Analytical solution for the case of small cell ohmic resistivity is obtained. An algorithm for numerical solution of the model equations is developed for practically important case when the cell polarization curve and ohmic resistivity are known. Good agreement between the calculated and experimental shapes of the local current density is demonstrated. Cell ohmic resisitivty greatly homogenizes the distribution of local current. A Python code for local current calculation is available for download.
000862307 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000862307 588__ $$aDataset connected to CrossRef
000862307 7001_ $$0P:(DE-Juel1)129878$$aKulikovsky, Andrei$$b1$$eCorresponding author
000862307 773__ $$0PERI:(DE-600)2027290-X$$a10.1016/j.elecom.2019.02.005$$gVol. 101, p. 35 - 38$$p35 - 38$$tElectrochemistry communications$$v101$$x1388-2481$$y2019
000862307 8564_ $$uhttps://juser.fz-juelich.de/record/862307/files/1-s2.0-S1388248119300414-main.pdf$$yOpenAccess
000862307 8564_ $$uhttps://juser.fz-juelich.de/record/862307/files/1-s2.0-S1388248119300414-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862307 909CO $$ooai:juser.fz-juelich.de:862307$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862307 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129878$$aForschungszentrum Jülich$$b1$$kFZJ
000862307 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000862307 9141_ $$y2019
000862307 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862307 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862307 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862307 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHEM COMMUN : 2017
000862307 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862307 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862307 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862307 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862307 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862307 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862307 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862307 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862307 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862307 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862307 920__ $$lyes
000862307 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000862307 9801_ $$aFullTexts
000862307 980__ $$ajournal
000862307 980__ $$aVDB
000862307 980__ $$aUNRESTRICTED
000862307 980__ $$aI:(DE-Juel1)IEK-3-20101013
000862307 981__ $$aI:(DE-Juel1)ICE-2-20101013