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We report analysis of a recent model for local current density distribution along the air channel in a PEM fuel
cell. Analytical solution for the case of small cell ohmic resistivity is obtained. An algorithm for numerical
solution of the model equations is developed for practically important case when the cell polarization curve and
ohmic resistivity are known. Good agreement between the calculated and experimental shapes of the local
current density is demonstrated. Cell ohmic resisitivty greatly homogenizes the distribution of local current. A

Python code for local current calculation is available for download.

1. Introduction

Distribution of local current density j over the surface of a polymer
electrolyte membrane (PEM) fuel cell is of large interest for cell de-
signers. Significant non-uniformity of j along the channel coordinate z
may cause fast local degradation of the membrane-electrode assembly
(MEA). However, measuring of local currents requires cell segmenta-
tion and a quite sophisticated hardware [1-6]. Thus, a simple method
for calculation of j shape using a minimal experimental information
(cell polarization curve and ohmic resistivity) would be very desirable.

A lot of papers are devoted to numerical CFD modeling of PEMFCs
(see e.g. a review [7]). Much less work has been done in analytical
modeling of j(z) shape. Seemingly a first analytical model for j(z) has
been developed in Refs.[8,9]. However, this model ignores potential
loss due to the cell ohmic resistivity (see below). Thosar and Lele [10]
incorporated the effect of oxygen diffusion across the channel; however,
their model also ignores ohmic loss. Liu et al. [11] included this loss;
however, the ohmic term is assumed to be independent on the co-
ordinate z, which is valid if j(z) variation is small. No comparison of
calculated and experimental j(z) shapes has been reported in Refs.
[10,11].

Recently, Chevalier et al. [12] developed a model for j(z), which
includes oxygen transport in the channel and the gas-diffusion layer
(GDL), and the voltage loss due to cell ohmic resistivity. However,
Chevalier et al. [12] compared their model j-shapes with the literature
experimental data using incomplete set of the cell parameters and they
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fitted model j(z) curve to the experimental points.

In this work, we derive analytical solution to the model equation
[12] for the case of small cell resistivity and we report an algorithm for
numerical solution of the model [12]. The algorithm is constructed for a
practically important case when the cell polarization curve is available.
What are the local current and oxygen concentration distributions over
the cell surface at a certain point on the polarization curve? The paper
aims at answering this question. Finally, we use a complete set of ex-
perimental data to calculate the shapes of j along the channel and we
show that these shapes are in good agreement with the local mea-
surements without curve fitting.

2. Model equations

Consider a PEMFC with the straight cathode channel and let the z-
axis be directed along the channel. Assuming plug flow conditions, the
oxygen mass conservation equation in the channel reads

o __i@

5z 4Fh’ @
Here, c and j are the local oxygen concentration and current density, v is
the flow velocity, and h is the channel depth. Neglecting proton and
oxygen transport losses in the cathode catalyst layer (CCL), local j is
given by the Tafel law:
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j=iw(ﬂjem(ﬁ)
Cref b 2

where i- is the volumetric exchange current density, I, is the CCL
thickness, c; is the oxygen concentration in the CCL, c.is the reference
(inlet) oxygen concentration, 5 is the positive by convention oxygen
reduction reaction (ORR) overpotential, and b is the ORR Tafel slope.

The ORR overpotential is determined by equation for the cell po-
tential Vo

Vee = Voc — 1 — Raj, 3

where V,, is the cell open-circuit voltage and Rg, is the sum of ohmic
resistivities in the cell. A last equation follows from the oxygen trans-
port equation in the GDL and it relates the oxygen concentrations ¢, and
c

a_c _J
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is the limiting current density due to oxygen transport in the GDL, Dj
and [, are the GDL oxygen diffusivity and thickness, respectively.
Introducing dimensionless variables

~ Z ~ j ~ J ~
z=2% j=2L, T==, =21
L il iyl b
t=C, Ro=lbRa p_V
Cref b b (6)

expressing 5 from Eq. (3) and substituting the result and ¢; from Eq. (4)
into Eq. (2), we get the following problem for ¢ and j:
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where
KV = exp (‘Z)C - ‘76811) (9)
is a constant parameter, J is the mean current density in the cell,
1 AFvhcs

A (10)

is the oxygen stoichiometry of the flow, and L is the channel length.
3. Analytical solutions
To solve the system of Egs.(7) and (8), we solve Eq. (8) for ¢ and

substitute the result into Eq. (7); this leads to a decoupled equation for
721
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Solution to Eq. (11) must obey to the obvious integral condition
1o o =
‘/0‘ jaz=1J. 12)

A key parameter in Eq. (11) is Rqj =~ RoJ = RqJ/b; for typical
PEMFCs, the upper value of this parameter is about 3. Here, we take for
the estimate Ro = 0.1 cm?, J = 1Acm ™2 and b = 0.03 V. Of practical
interest is, thus, to study solutions to Eq. (11) in the range 0 < RoJ < 3.

Setting in Eq. (8) R = 0, we get

j =at, a3
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where

KVinm
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14

Substituting Eq. (13) into Eq. (7) and solving the resulting equation, we
get ¢ = exp(—az/(AT)). Substituting this ¢ into Eq. (13) and using Eq.
(12) to eliminate a, we find [8,9]

(15)

(16)

These are the zero-order approximations of j (Z) and & (), which cor-
respond to vanishingly small product Rg,j. Note that Egs.(15) and (16)
do not contain Ky and jj;,, .

Solution for the first-order approximation of a small but non-
zeroRqj can be obtained as follows. Expanding the right side of Eq. (11)
in Taylor series over small R, and keeping two leading terms, we get
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Eq. (17) is separable and it can easily be integrated. Using Eq. (12) to
eliminate j° from the solution, we get
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Integrating Eq. (7) with f from Eq. (18), we get the oxygen con-
centration along the channel:

- K‘i x ln(exp (i) - 1)
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The solutions (18) and (20) work well up to RoJ =~ 0.3 (see below).

The first-order solutions (18) and (20) explicitly depend on j‘{im
through a and on Ky. The parameter Ky, Eq. (9), exponentially depends
on the cell open-circuit voltage, which is usually unknown. Moreover,
measuring a true V,, is a difficult task, as at zero current in the external
load, the cell supports a non-zero internal current due to hydrogen
crossover through the membrane. Typically, crossover lowers the the-
oretical V,. by 100 to 200 mV.

However, if the cell polarization curve is available, parameter Ky,
can be found from the zero-order solutions. We take a small cell current
T*, so that RoJ™ and 7*/j; . are vanishingly small. In that case, Eq. (8)
simplifies to j = K;¢. Comparing this to the zero-order solutions, Egs.
(15) and (16), we see that

19)
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With Eq. (9), we find the true open-circuit voltage:

Voe = In(&) + Vi (22)

where 75, corresponds to 7*. Once ¥, is determined, parameter Ky for
lower cell potentials can be found from Eq. (9). This procedure requires
knowledge of a single low-current point (J*, V;) on the cell polariza-
tion curve.
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4. Numerical solution

In the case of 0.3 < Roj < 3, which in our cell is realized for the
currents above 300-400 mA cm ™2, Eq. (11) has to be solved numeri-
cally. The cost of conversion of an algebraic equation into a differential
one is a boundary condition j (0) = j° where j° a priori is unknown.
Basically, there are two problem formulations for Eq. (11). From Eq.
(10), it is seen that the product AT on the left side of Eq. (11) is in-
dependent of 7. Thus, the first option is to fix an arbitrary j°, solve
numerically Eq. (11), and to calculate the respective mean current
density 7 from Eq. (12). This approach has been taken by Chevalier
et al. [12] for equation analysis and illustration purposes.

In practice, the cell polarization curve is usually available from
experiments, which means that one is interested in the shape of local
current corresponding to a certain pair (T, Vo). In this case, T is given
and j° has to be found from Eq. (12). A possible way to solve the system
Egs. (11) and (12) in this case is as follows. We formulate the problem
as a least-squares one, i.e., starting from some initial fo, we seek for fo
which minimizes the merit function

2
(folf(z;f")dz —f) — min.

A good starting point is 7° = 7. To minimize the function Eq. (23), we
used the leastsq routine from the Python Scipy library. This routine
employs the Levenberg-Marquardt algorithm of optimization; for the
problem Egs. (11) and (23), the algorithm is stable and robust. A Py-
thon code for the problem solution can be downloaded from https://
github.com/akulikovsky/Local-current/blob/master/Local_current_
solver.py.

(23)

5. Experimental

Local current density measurements have been performed using a
segmented cell system and a test station developed at Hawaii Natural
Energy Institute [13]. The segmented cell setup consists of the cell
hardware, the custom designed current transducer system, the data
acquisition device and a single cell test station. HNEI's system has
closed loop Hall sensors (Honeywell CSNN 191) for current detection
and an improved data acquisition system, which allows us the si-
multaneous data collection from 10 current channels. The segmented
cell system is typically operated as a single cell using the test station
and standard testing protocols which simulates real conditions since
only an overall cell load is controlled.

The segmented cell hardware is based on 100 cm? cell and consists
of non-segmented and segmented flow field plates and GDLs. Both the
plates have the same ten parallel channel serpentine design arranged in
co-flow configuration. The segmented plate consists of 10 segments
with an area of 7.6 cm?; the segments are arranged in two parallel rows.
Inlet is at segment 1 and the outlet at segment 10. Each segment has its
own current collector and GDL. The segmentation was applied to the
cathode.

Catalyst coated membranes (CCM) from Gore with the active area of
100 cm? have been used. Catalyst loading was 0.4 mgp,cm ™~ 2 for anode
and cathode with the catalyst layer thickness of 10-12p m. The
thickness of reinforced membrane varied in the range of 16-18 u m.
Sigracet 25BC was used as GDLs for both the electrodes. 25BC consists
of carbon paper and microporous layer with the total thickness of
220-235p m and porosity of 80%. Teflon gaskets (1251 m) were em-
ployed for both electrodes to ensure a required compression ratio.

The cell was operated with H, /air gas configuration at a cell
temperature of 80 °C. The anode/cathode conditions were 2/2 stoi-
chiometry, 100/50% relative humidity and 150/150 kPa backpressure.

6. Results and discussion

The true V, of our cell has been estimated from Eq. (22) using the
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Fig. 1. (a) Experimental (points) and numerical solution to (11), (12) (solid
lines) shapes of the local current density along the air channel. For comparison,
the shapes corresponding to zero ohmic resistance (Eq. (15), dotted lines), and
for the case of a small parameter R,J (Eq. (18), dashed lines) are shown. (b)
Numerical (solid line) and analytical, (dashed and dotted lines) normalized
oxygen concentration c/c,.s along the channel.

data for the smallest J" = 101.28 mAcm ™2 (see the code). It gives
Voc = 1.1688V; however, a more accurate results are obtained with
slightly lower V,. = 1.1649 V. The last value of V, has been fixed in the
calculations.

The experimental and model shapes of the local current density j are
shown in Fig. la for the mean cell currents of 100, 200 and
400 mA cm ™~ 2. Parameters for the calculations are listed in Table 1. As
can be seen, the agreement between the experiment and numerical
model is very good. For comparison, the zero-order shapes Eq. (15) and
the first-order shapes, Eq. (18), are also shown. As can be seen, for our
set of the cell parameters, Eq. (15) well describes j(z) for J below
100 mA cm % for larger currents, the zero-order approximation fails.
The first-order Eq. (18) works very well for J = 100 and 200 mA cm ™2
(Fig. 1a). However, for J = 400 mA cm ™2, Eq. (18) gives a wrong slope

Table 1

Geometrical and operating parameters of the cell. Parameters of the experi-
mental cell polarization curve are listed in the Python code. R, was measured
by impedance spectroscopy.

Catalyst layer thickness [, pm 12
Gas diffusion layer thickness lp, pm 235
Channel depth h, cm 0.15
Channel length L, cm 52.78
ORR Tafel slope b, V 0.03
ORR exchange current density i, A cm 2 (assumed) 1072
GDL oxygen diffusivity Dy, cm?s ™! 0.02
Cell ohmic resistivity Rg, Q cm? 0.045
Cathode flow stoichiometry A 2
Cathode flow relative humidity 50%
Absolute pressure, kPa 150
Cell temperature, K 273 + 80
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of the curve j(z) (Fig. 1a). This is not surprising, as for the parameters in
Table 1 and J = 400mA cm ™2, the product RoJ =~ 0.6 is not small.
Model shapes of the oxygen concentration for 400 mA cm ~ 2 are plotted
in Fig. 1b. As can be seen, the difference between the shapes in Fig. 1b
is small, as the oxygen concentration loss is proportional to integral of
the local current density over z, Eq. (1).

The results show that the quasi-2d, along-the-channel model, Egs.
(11) and (12), well describes the experimental shape of the local current
density in our 2d segmented cell. The reason is, perhaps, small variation
of the local current over the cell surface (Fig. 1a), which means that
true 2d effects due to spatial variation of 5 are small. Another effect that
potentially could affect the 1D distribution of j(z) is under-rib oxygen
transport between two adjacent turns of the meander channel [14].
Fig. 1a suggest that in our cell, this effect is not large. Note that R, was
assumed to be independent of z, i.e., the model does not describe si-
tuations with local membrane drying. The model is based of the Tafel
equation for the local j. This approximation holds if j is less than
(strictly speaking, much less than) the characteristic current densities
for the proton j, = g,b/l; and oxygen j,x = 4FD,.Cref/1; transport in the
CCL. Here, 0, is the CCL proton conductivity and D, is the CCL oxygen
diffusivity. Using the approximations for 0,(J), Dox(J) and b(J) obtained
for a modern Pt/C electrode from Gore [15], it can be shown that the
relation 1.8 J < min{jp, Jox} holds for J below 0.4 Acm™2 Further, with
the data [14], at J = 0.4 A cm 2, the resistivity due to oxygen transport
loss in the CCL Ryx = bly/(12FDyCref) ~ 0.036 Q2 cm? and the resistivity
due to proton transport in the CCL R, ~ [,/(30,,) ~ 0.007 Q cm?. We see
that R, < Rg, while Ry, ~ Rq. The reason why R,, does not affect the
model shapes in Fig. la is not clear yet; understanding this effect re-
quires incorporation of oxygen transport in the CCL into the model. It is
interesting to note that oxygen transport in the GDL does not affect the
zero-order shapes of Eq. (15).

The model ignores the gradient of oxygen concentration across the
channel. CFD calculations show that this gradient is small, e.g., in Fig. 8
of Ref. [16], at the current density of 300 mA cm ™2, variation of ¢
across the channel is less than 0.5%. Analytical model [10] also shows
that below 1 A cm ~2, the effect of oxygen diffusion across the channel is
marginal.

Last but not least, it should be emphasized that non-zero ohmic
resistivity of the cell homogenizes local current distribution, which
otherwise would have been strongly nonuniform (cf. dotted and solid
curves for J = 400 mA cm ™2 in Fig. 1a). As a major contribution to Ro
gives the membrane, this result emphasizes again the importance of
water management and selection of proper membrane thickness in
PEMFCs.

7. Conclusions

Analysis of a recent model [12] for the distribution of local current
density j(z) along the cathode channel of a PEM fuel cell is performed.
Analytical solution for j(z) is obtained in the limit of small cell ohmic
resistivity Rq. For arbitrary Rg, an algorithm for numerical solution of
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the model equation is developed and a link to Python code im-
plementing this algorithm is given. Comparison of the numerical and
analytical solutions with the experimental shapes j(z) shows validity of
the numerical model for the mean cell current density J up to
400 mA cm ™~ 2. The analytical solution works up to J ~ 200 mA cm ™2,
Comparison of solutions shows that the cell ohmic resistivity greatly

homogenizes the shape of j(z).
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