000862330 001__ 862330
000862330 005__ 20241127124645.0
000862330 0247_ $$2doi$$a10.1016/j.ijhydene.2019.05.028
000862330 0247_ $$2ISSN$$a0360-3199
000862330 0247_ $$2ISSN$$a1879-3487
000862330 0247_ $$2Handle$$a2128/24306
000862330 0247_ $$2WOS$$aWOS:000518699600028
000862330 037__ $$aFZJ-2019-02668
000862330 082__ $$a620
000862330 1001_ $$0P:(DE-Juel1)169155$$aSchemme, Steffen$$b0$$eCorresponding author$$ufzj
000862330 245__ $$aH2-Based Synthetic Fuels: A Techno-Economic Comparison of Alcohol, Ether and Hydrocarbon Production
000862330 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2020
000862330 3367_ $$2DRIVER$$aarticle
000862330 3367_ $$2DataCite$$aOutput Types/Journal article
000862330 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581087669_26482
000862330 3367_ $$2BibTeX$$aARTICLE
000862330 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862330 3367_ $$00$$2EndNote$$aJournal Article
000862330 520__ $$aElectricity-based fuels are one promising option to achieve the transition of the energy system, and especially the transport sector, in order to minimize the role of fossil energy carriers. One major problem is the lacking compatibility between different techno-economic assessments, such that recommendations regarding the most promising Power-to-Fuel technology are difficult to make. This work provides a technically sound comparison of various Power-to-Fuel options regarding technological maturity and efficiency, as well as cost. The investigated options include methanol, ethanol, butanol, octanol, DME, OME3-5 and hydrocarbons. To guarantee the comparability, all necessary chemical plants were designed in Aspen Plus® to determine material and energy consumption, as well as investment costs within the same boundary conditions and assumptions in all simulations and calculations. Individual technical aspects of the various synthesis routes, as well as their advantages and disadvantages, are highlighted.
000862330 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000862330 588__ $$aDataset connected to CrossRef
000862330 7001_ $$0P:(DE-Juel1)172087$$aBreuer, Janos$$b1$$ufzj
000862330 7001_ $$0P:(DE-Juel1)173961$$aKöller, Maximilian$$b2
000862330 7001_ $$0P:(DE-Juel1)172726$$aMeschede, Sven$$b3
000862330 7001_ $$0P:(DE-Juel1)173815$$aWalman, Fiona$$b4
000862330 7001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b5$$ufzj
000862330 7001_ $$0P:(DE-Juel1)129902$$aPeters, Ralf$$b6$$ufzj
000862330 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b7$$ufzj
000862330 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2019.05.028$$gp. S0360319919318580$$n8$$p5395-5414$$tInternational journal of hydrogen energy$$v45$$x0360-3199$$y2020
000862330 8564_ $$uhttps://juser.fz-juelich.de/record/862330/files/Schemme%20et%20al.-2019-IJHE-%20H2%20based%20synthetic%20fuels%20%5BAccepted%20Manuscript%5D.pdf$$yPublished on 2019-06-04. Available in OpenAccess from 2021-06-04.
000862330 909CO $$ooai:juser.fz-juelich.de:862330$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169155$$aForschungszentrum Jülich$$b0$$kFZJ
000862330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172087$$aForschungszentrum Jülich$$b1$$kFZJ
000862330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b5$$kFZJ
000862330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b6$$kFZJ
000862330 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b7$$kFZJ
000862330 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b7$$kRWTH
000862330 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000862330 9141_ $$y2020
000862330 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862330 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000862330 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862330 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000862330 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2017
000862330 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862330 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862330 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862330 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862330 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862330 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862330 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862330 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862330 920__ $$lyes
000862330 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000862330 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x1
000862330 9801_ $$aFullTexts
000862330 980__ $$ajournal
000862330 980__ $$aVDB
000862330 980__ $$aUNRESTRICTED
000862330 980__ $$aI:(DE-Juel1)IEK-14-20191129
000862330 980__ $$aI:(DE-Juel1)IEK-3-20101013
000862330 981__ $$aI:(DE-Juel1)IET-4-20191129
000862330 981__ $$aI:(DE-Juel1)ICE-2-20101013
000862330 981__ $$aI:(DE-Juel1)IET-4-20191129