Home > Publications database > Distinct magnetotransport and orbital fingerprints of chiral bobbers > print |
001 | 862354 | ||
005 | 20230426083209.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.99.140407 |2 doi |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1050-2947 |2 ISSN |
024 | 7 | _ | |a 1094-1622 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/22068 |2 Handle |
024 | 7 | _ | |a WOS:000464718000002 |2 WOS |
024 | 7 | _ | |a altmetric:58930675 |2 altmetric |
037 | _ | _ | |a FZJ-2019-02688 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Redies, M. |0 P:(DE-Juel1)172666 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Distinct magnetotransport and orbital fingerprints of chiral bobbers |
260 | _ | _ | |a Woodbury, NY |c 2019 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1581414223_29859 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a While chiral magnetic skyrmions have been attracting significant attention in the past years, recently, a new type of chiral particle emerging in thin films—a chiral bobber—has been theoretically predicted and experimentally observed. Here, based on theoretical arguments, we uncover that these novel chiral states possess inherent transport fingerprints that allow for their unambiguous electrical detection in systems comprising several types of chiral states. We reveal that unique transport and orbital characteristics of bobbers root in the nontrivial magnetization distribution in the vicinity of the Bloch points, and demonstrate that tuning the details of the Bloch point topology can be used to drastically alter the emergent response properties of chiral bobbers to external fields, which bears great potential for spintronics applications and cognitive computing. |
536 | _ | _ | |a 142 - Controlling Spin-Based Phenomena (POF3-142) |0 G:(DE-HGF)POF3-142 |c POF3-142 |f POF III |x 0 |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 1 |
536 | _ | _ | |a Topological transport in real materials from ab initio (jiff40_20090701) |0 G:(DE-Juel1)jiff40_20090701 |c jiff40_20090701 |f Topological transport in real materials from ab initio |x 2 |
542 | _ | _ | |i 2019-04-12 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
542 | _ | _ | |i 2020-04-11 |2 Crossref |u https://link.aps.org/licenses/aps-default-accepted-manuscript-license |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Lux, Fabian |0 P:(DE-Juel1)169506 |b 1 |u fzj |
700 | 1 | _ | |a Hanke, J.-P. |0 P:(DE-Juel1)161179 |b 2 |u fzj |
700 | 1 | _ | |a Buhl, Patrick |0 P:(DE-Juel1)161204 |b 3 |u fzj |
700 | 1 | _ | |a Müller, Gideon |0 P:(DE-Juel1)165751 |b 4 |u fzj |
700 | 1 | _ | |a Kiselev, Nikolai |0 P:(DE-Juel1)145390 |b 5 |u fzj |
700 | 1 | _ | |a Blügel, S. |0 P:(DE-Juel1)130548 |b 6 |u fzj |
700 | 1 | _ | |a Mokrousov, Y. |0 P:(DE-Juel1)130848 |b 7 |u fzj |
773 | 1 | 8 | |a 10.1103/physrevb.99.140407 |b American Physical Society (APS) |d 2019-04-12 |n 14 |p 140407 |3 journal-article |2 Crossref |t Physical Review B |v 99 |y 2019 |x 2469-9950 |
773 | _ | _ | |a 10.1103/PhysRevB.99.140407 |g Vol. 99, no. 14, p. 140407 |0 PERI:(DE-600)2844160-6 |n 14 |p 140407 |t Physical review / B |v 99 |y 2019 |x 2469-9950 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/862354/files/PhysRevB.99.140407.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/862354/files/PhysRevB.99.140407.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:862354 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)172666 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)169506 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)161179 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)161204 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)165751 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)145390 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130548 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130848 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-142 |2 G:(DE-HGF)POF3-100 |v Controlling Spin-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |a 10.1038/nnano.2013.29 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1361-6528/aa7af5 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1361-6528/aa5838 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevApplied.9.014034 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/nnano.2013.243 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41565-017-0044-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.112.186601 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41565-018-0093-3 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1367-2630/18/4/045002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.115.117201 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.5006918 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/natrevmats.2016.44 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0022-3727/49/42/423001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.92.115417 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epjb/e2018-90090-0 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1142/S0217979211058912 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.95.137205 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.95.137204 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0953-8984/25/16/163201 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.93.096806 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevX.9.011011 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1167747 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/RevModPhys.90.015001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.113.187202 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.107.127205 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s41567-018-0064-5 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/RevModPhys.82.1539 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.92.020401 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/ncomms13613 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.94.121114 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/srep41078 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s42005-018-0055-y |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.121.147203 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|