000862365 001__ 862365
000862365 005__ 20220930130210.0
000862365 0247_ $$2doi$$a10.3390/ph12020057
000862365 0247_ $$2Handle$$a2128/22074
000862365 0247_ $$2altmetric$$aaltmetric:59023697
000862365 0247_ $$2pmid$$apmid:31013984
000862365 0247_ $$2WOS$$aWOS:000477028700012
000862365 037__ $$aFZJ-2019-02699
000862365 082__ $$a610
000862365 1001_ $$0P:(DE-Juel1)156407$$aSchneider, Daniela$$b0$$eCorresponding author$$ufzj
000862365 245__ $$aRelevance of In Vitro Metabolism Models to PET Radiotracer Development: Prediction of In Vivo Clearance in Rats from Microsomal Stability Data
000862365 260__ $$aBasel$$bMDPI$$c2019
000862365 3367_ $$2DRIVER$$aarticle
000862365 3367_ $$2DataCite$$aOutput Types/Journal article
000862365 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1555479589_4585
000862365 3367_ $$2BibTeX$$aARTICLE
000862365 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862365 3367_ $$00$$2EndNote$$aJournal Article
000862365 520__ $$aThe prediction of in vivo clearance from in vitro metabolism models such as liver microsomes is an established procedure in drug discovery. The potentials and limitations of this approach have been extensively evaluated in the pharmaceutical sector; however, this is not the case for the field of positron emission tomography (PET) radiotracer development. The application of PET radiotracers and classical drugs differs greatly with regard to the amount of substance administered. In typical PET imaging sessions, subnanomolar quantities of the radiotracer are injected, resulting in body concentrations that cannot be readily simulated in analytical assays. This raises concerns regarding the predictability of radiotracer clearance from in vitro data. We assessed the accuracy of clearance prediction for three prototypical PET radiotracers developed for imaging the A1 adenosine receptor (A1AR). Using the half-life (t1/2) approach and physiologically based scaling, in vivo clearance in the rat model was predicted from microsomal stability data. Actual clearance could be accurately predicted with an average fold error (AFE) of 0.78 and a root mean square error (RMSE) of 1.6. The observed slight underprediction (1.3-fold) is in accordance with the prediction accuracy reported for classical drugs. This result indicates that the prediction of radiotracer clearance is possible despite concentration differences of more than three orders of magnitude between in vitro and in vivo conditions. Consequently, in vitro metabolism models represent a valuable tool for PET radiotracer development.
000862365 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000862365 7001_ $$0P:(DE-Juel1)131712$$aOskamp, Angela$$b1$$ufzj
000862365 7001_ $$0P:(DE-Juel1)131824$$aHolschbach, Marcus$$b2$$ufzj
000862365 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b3$$ufzj
000862365 7001_ $$0P:(DE-Juel1)131672$$aBauer, Andreas$$b4$$ufzj
000862365 7001_ $$0P:(DE-Juel1)131810$$aBier, Dirk$$b5$$ufzj
000862365 773__ $$0PERI:(DE-600)2193542-7$$a10.3390/ph12020057$$n2$$p57$$tPharmaceuticals$$v12$$x1424-8247$$y2019
000862365 8564_ $$uhttps://juser.fz-juelich.de/record/862365/files/Invoice_MDPI_pharmaceuticals-480729_642.93EUR.pdf
000862365 8564_ $$uhttps://juser.fz-juelich.de/record/862365/files/Invoice_MDPI_pharmaceuticals-480729_642.93EUR.pdf?subformat=pdfa$$xpdfa
000862365 8564_ $$uhttps://juser.fz-juelich.de/record/862365/files/pharmaceuticals-12-00057.pdf$$yOpenAccess
000862365 8564_ $$uhttps://juser.fz-juelich.de/record/862365/files/pharmaceuticals-12-00057.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862365 8767_ $$8pharmaceuticals-480729$$92019-04-12$$d2019-04-15$$eAPC$$jZahlung erfolgt
000862365 909CO $$ooai:juser.fz-juelich.de:862365$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000862365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156407$$aForschungszentrum Jülich$$b0$$kFZJ
000862365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131712$$aForschungszentrum Jülich$$b1$$kFZJ
000862365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131824$$aForschungszentrum Jülich$$b2$$kFZJ
000862365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b3$$kFZJ
000862365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131672$$aForschungszentrum Jülich$$b4$$kFZJ
000862365 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131810$$aForschungszentrum Jülich$$b5$$kFZJ
000862365 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000862365 9141_ $$y2019
000862365 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862365 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862365 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862365 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000862365 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862365 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862365 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862365 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862365 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862365 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862365 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862365 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862365 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862365 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000862365 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x1
000862365 980__ $$ajournal
000862365 980__ $$aVDB
000862365 980__ $$aUNRESTRICTED
000862365 980__ $$aI:(DE-Juel1)INM-2-20090406
000862365 980__ $$aI:(DE-Juel1)INM-5-20090406
000862365 980__ $$aAPC
000862365 9801_ $$aAPC
000862365 9801_ $$aFullTexts