001     862365
005     20220930130210.0
024 7 _ |a 10.3390/ph12020057
|2 doi
024 7 _ |a 2128/22074
|2 Handle
024 7 _ |a altmetric:59023697
|2 altmetric
024 7 _ |a pmid:31013984
|2 pmid
024 7 _ |a WOS:000477028700012
|2 WOS
037 _ _ |a FZJ-2019-02699
082 _ _ |a 610
100 1 _ |a Schneider, Daniela
|0 P:(DE-Juel1)156407
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Relevance of In Vitro Metabolism Models to PET Radiotracer Development: Prediction of In Vivo Clearance in Rats from Microsomal Stability Data
260 _ _ |a Basel
|c 2019
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1555479589_4585
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The prediction of in vivo clearance from in vitro metabolism models such as liver microsomes is an established procedure in drug discovery. The potentials and limitations of this approach have been extensively evaluated in the pharmaceutical sector; however, this is not the case for the field of positron emission tomography (PET) radiotracer development. The application of PET radiotracers and classical drugs differs greatly with regard to the amount of substance administered. In typical PET imaging sessions, subnanomolar quantities of the radiotracer are injected, resulting in body concentrations that cannot be readily simulated in analytical assays. This raises concerns regarding the predictability of radiotracer clearance from in vitro data. We assessed the accuracy of clearance prediction for three prototypical PET radiotracers developed for imaging the A1 adenosine receptor (A1AR). Using the half-life (t1/2) approach and physiologically based scaling, in vivo clearance in the rat model was predicted from microsomal stability data. Actual clearance could be accurately predicted with an average fold error (AFE) of 0.78 and a root mean square error (RMSE) of 1.6. The observed slight underprediction (1.3-fold) is in accordance with the prediction accuracy reported for classical drugs. This result indicates that the prediction of radiotracer clearance is possible despite concentration differences of more than three orders of magnitude between in vitro and in vivo conditions. Consequently, in vitro metabolism models represent a valuable tool for PET radiotracer development.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
700 1 _ |a Oskamp, Angela
|0 P:(DE-Juel1)131712
|b 1
|u fzj
700 1 _ |a Holschbach, Marcus
|0 P:(DE-Juel1)131824
|b 2
|u fzj
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 3
|u fzj
700 1 _ |a Bauer, Andreas
|0 P:(DE-Juel1)131672
|b 4
|u fzj
700 1 _ |a Bier, Dirk
|0 P:(DE-Juel1)131810
|b 5
|u fzj
773 _ _ |a 10.3390/ph12020057
|0 PERI:(DE-600)2193542-7
|n 2
|p 57
|t Pharmaceuticals
|v 12
|y 2019
|x 1424-8247
856 4 _ |u https://juser.fz-juelich.de/record/862365/files/Invoice_MDPI_pharmaceuticals-480729_642.93EUR.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/862365/files/Invoice_MDPI_pharmaceuticals-480729_642.93EUR.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862365/files/pharmaceuticals-12-00057.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862365/files/pharmaceuticals-12-00057.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862365
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156407
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131712
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131672
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131810
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21