000862389 001__ 862389 000862389 005__ 20220930130210.0 000862389 0247_ $$2doi$$a10.1371/journal.pcbi.1006900 000862389 0247_ $$2ISSN$$a1553-734X 000862389 0247_ $$2ISSN$$a1553-7358 000862389 0247_ $$2Handle$$a2128/22075 000862389 0247_ $$2pmid$$apmid:30901335 000862389 0247_ $$2WOS$$aWOS:000463877900064 000862389 0247_ $$2altmetric$$aaltmetric:58134203 000862389 037__ $$aFZJ-2019-02717 000862389 082__ $$a610 000862389 1001_ $$0P:(DE-HGF)0$$aWeiel, Marie$$b0 000862389 245__ $$aRapid interpretation of small-angle X-ray scattering data 000862389 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2019 000862389 3367_ $$2DRIVER$$aarticle 000862389 3367_ $$2DataCite$$aOutput Types/Journal article 000862389 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1555480376_5262 000862389 3367_ $$2BibTeX$$aARTICLE 000862389 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000862389 3367_ $$00$$2EndNote$$aJournal Article 000862389 520__ $$aThe fundamental aim of structural analyses in biophysics is to reveal a mutual relation between a molecule’s dynamic structure and its physiological function. Small-angle X-ray scattering (SAXS) is an experimental technique for structural characterization of macromolecules in solution and enables time-resolved analysis of conformational changes under physiological conditions. As such experiments measure spatially averaged low-resolution scattering intensities only, the sparse information obtained is not sufficient to uniquely reconstruct a three-dimensional atomistic model. Here, we integrate the information from SAXS into molecular dynamics simulations using computationally efficient native structure-based models. Dynamically fitting an initial structure towards a scattering intensity, such simulations produce atomistic models in agreement with the target data. In this way, SAXS data can be rapidly interpreted while retaining physico-chemical knowledge and sampling power of the underlying force field. We demonstrate our method’s performance using the example of three protein systems. Simulations are faster than full molecular dynamics approaches by more than two orders of magnitude and consistently achieve comparable accuracy. Computational demands are reduced sufficiently to run the simulations on commodity desktop computers instead of high-performance computing systems. These results underline that scattering-guided structure-based simulations provide a suitable framework for rapid early-stage refinement of structures towards SAXS data with particular focus on minimal computational resources and time. 000862389 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000862389 588__ $$aDataset connected to CrossRef 000862389 7001_ $$0P:(DE-HGF)0$$aReinartz, Ines$$b1 000862389 7001_ $$0P:(DE-Juel1)173652$$aSchug, Alexander$$b2$$eCorresponding author$$ufzj 000862389 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1006900$$gVol. 15, no. 3, p. e1006900 -$$n3$$pe1006900 -$$tPLoS Computational Biology$$v15$$x1553-7358$$y2019 000862389 8564_ $$uhttps://juser.fz-juelich.de/record/862389/files/journal.pcbi.1006900.pdf$$yOpenAccess 000862389 8564_ $$uhttps://juser.fz-juelich.de/record/862389/files/journal.pcbi.1006900.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000862389 8767_ $$8PAB240035$$92019-04-02$$d2019-04-16$$eAPC$$jDeposit$$lDeposit: PLoS$$pPCOMPBIOL-D-18-01414$$z2350 USD 000862389 909CO $$ooai:juser.fz-juelich.de:862389$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery 000862389 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173652$$aForschungszentrum Jülich$$b2$$kFZJ 000862389 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000862389 9141_ $$y2019 000862389 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000862389 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000862389 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000862389 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000862389 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2017 000862389 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000862389 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000862389 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000862389 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000862389 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000862389 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000862389 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000862389 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000862389 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000862389 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000862389 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000862389 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000862389 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1 000862389 980__ $$ajournal 000862389 980__ $$aVDB 000862389 980__ $$aUNRESTRICTED 000862389 980__ $$aI:(DE-Juel1)JSC-20090406 000862389 980__ $$aI:(DE-Juel1)NIC-20090406 000862389 980__ $$aAPC 000862389 9801_ $$aAPC 000862389 9801_ $$aFullTexts