001     862389
005     20220930130210.0
024 7 _ |a 10.1371/journal.pcbi.1006900
|2 doi
024 7 _ |a 1553-734X
|2 ISSN
024 7 _ |a 1553-7358
|2 ISSN
024 7 _ |a 2128/22075
|2 Handle
024 7 _ |a pmid:30901335
|2 pmid
024 7 _ |a WOS:000463877900064
|2 WOS
024 7 _ |a altmetric:58134203
|2 altmetric
037 _ _ |a FZJ-2019-02717
082 _ _ |a 610
100 1 _ |a Weiel, Marie
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Rapid interpretation of small-angle X-ray scattering data
260 _ _ |a San Francisco, Calif.
|c 2019
|b Public Library of Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1555480376_5262
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The fundamental aim of structural analyses in biophysics is to reveal a mutual relation between a molecule’s dynamic structure and its physiological function. Small-angle X-ray scattering (SAXS) is an experimental technique for structural characterization of macromolecules in solution and enables time-resolved analysis of conformational changes under physiological conditions. As such experiments measure spatially averaged low-resolution scattering intensities only, the sparse information obtained is not sufficient to uniquely reconstruct a three-dimensional atomistic model. Here, we integrate the information from SAXS into molecular dynamics simulations using computationally efficient native structure-based models. Dynamically fitting an initial structure towards a scattering intensity, such simulations produce atomistic models in agreement with the target data. In this way, SAXS data can be rapidly interpreted while retaining physico-chemical knowledge and sampling power of the underlying force field. We demonstrate our method’s performance using the example of three protein systems. Simulations are faster than full molecular dynamics approaches by more than two orders of magnitude and consistently achieve comparable accuracy. Computational demands are reduced sufficiently to run the simulations on commodity desktop computers instead of high-performance computing systems. These results underline that scattering-guided structure-based simulations provide a suitable framework for rapid early-stage refinement of structures towards SAXS data with particular focus on minimal computational resources and time.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Reinartz, Ines
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schug, Alexander
|0 P:(DE-Juel1)173652
|b 2
|e Corresponding author
|u fzj
773 _ _ |a 10.1371/journal.pcbi.1006900
|g Vol. 15, no. 3, p. e1006900 -
|0 PERI:(DE-600)2193340-6
|n 3
|p e1006900 -
|t PLoS Computational Biology
|v 15
|y 2019
|x 1553-7358
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862389/files/journal.pcbi.1006900.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862389/files/journal.pcbi.1006900.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862389
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)173652
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS COMPUT BIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21