000862402 001__ 862402
000862402 005__ 20240712084553.0
000862402 0247_ $$2doi$$a10.1021/acs.inorgchem.9b00406
000862402 0247_ $$2ISSN$$a0020-1669
000862402 0247_ $$2ISSN$$a1520-510X
000862402 0247_ $$2pmid$$apmid:30964275
000862402 0247_ $$2WOS$$aWOS:000467351100086
000862402 037__ $$aFZJ-2019-02730
000862402 082__ $$a540
000862402 1001_ $$0P:(DE-Juel1)176900$$aMurphy, Gabriel$$b0
000862402 245__ $$aControlling Oxygen Defect Formation and Its Effect on Reversible Symmetry Lowering and Disorder-to-Order Phase Transformations in Nonstoichiometric Ternary Uranium Oxides
000862402 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2019
000862402 3367_ $$2DRIVER$$aarticle
000862402 3367_ $$2DataCite$$aOutput Types/Journal article
000862402 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1599557369_32472
000862402 3367_ $$2BibTeX$$aARTICLE
000862402 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862402 3367_ $$00$$2EndNote$$aJournal Article
000862402 520__ $$aIn situ synchrotron powder X-ray diffraction measurements have demonstrated that the isostructural AUO4–x (A = alkaline earth metal cation) oxides CaUO4–x and α-Sr0.4Ca0.6UO4–x undergo a reversible phase transformation under reducing conditions at high temperatures associated with the ordering of in-plane oxygen vacancies resulting in the lowering of symmetry. When rhombohedral (space group R3̅m) CaUO4–x and α-Sr0.4Ca0.6UO4–x are heated to 450 and 400 °C, respectively, in a hydrogen atmosphere, they undergo a first-order phase transformation to a single phase structure which can be refined against a triclinic model in space group P1̅, δ-CaUO4–x and δ-Sr0.4Ca0.6UO4–x, where the oxygen vacancies are disordered initially. Continued heating results in the appearance of superlattice reflections, indicating the ordering of in-plane oxygen vacancies. Cooling ordered δ-CaUO4–x and δ-Sr0.4Ca0.6UO4–x to near room temperature results in the reformation of the disordered rhombohedral phases. Essential to the transformation is the generation of a critical amount of oxygen vacancies. Once these are formed, the transformation can be accessed continuously through thermal cycling, showing that the transformations are purely thermodynamic in origin. Stoichiometric structures of both oxides can be recovered by heating oxygen deficient CaUO4–x and α-Sr0.4Ca0.6UO4–x under pure oxygen to high temperatures. When heated in air, the amount of oxygen vacancy defects that form in CaUO4–x and α-Sr0.4Ca0.6UO4–x are found to correlate with the A site composition. The inclusion of the larger Sr2+ cation on the A site reduces defect–defect interactions, which increases the amount of defects that can form and lowers their formation temperature. The relative difference in the amount of defects that form can be understood on the basis of oxygen vacancy and U5+ disordering as shown by both ab initio calculations and estimated oxygen vacancy formation energies based on thermodynamic considerations. This difference in defect–defect interactions consequently introduces variations in the long-range ordered anionic lattice of the δ phases despite the isostructural relationship of the α structures of CaUO4–x and Sr0.4Ca0.6UO4–x. These results are discussed with respect to the influence the A site cation has upon anion defect formation and ordering and are also compared to δ-SrUO4–x, the only other material known to be able to undergo a reversible symmetry lowering and disorder-to-order transformation with increasing temperature
000862402 536__ $$0G:(DE-HGF)POF3-161$$a161 - Nuclear Waste Management (POF3-161)$$cPOF3-161$$fPOF III$$x0
000862402 536__ $$0G:(DE-Juel1)jiek61_20181101$$aAtomistic modeling of radionuclide-bearing materials for safe management of high level nuclear waste. (jiek61_20181101)$$cjiek61_20181101$$fAtomistic modeling of radionuclide-bearing materials for safe management of high level nuclear waste.$$x1
000862402 536__ $$0G:(DE-Juel1)jara0038_20121101$$aInvestigation of the new materials for safe management of high level nuclear waste. (jara0038_20121101)$$cjara0038_20121101$$fInvestigation of the new materials for safe management of high level nuclear waste.$$x2
000862402 588__ $$aDataset connected to CrossRef
000862402 7001_ $$0P:(DE-HGF)0$$aWang, Chun-Hai$$b1
000862402 7001_ $$00000-0003-3273-8889$$aZhang, Zhaoming$$b2$$eCorresponding author
000862402 7001_ $$0P:(DE-Juel1)137024$$aKowalski, Piotr$$b3
000862402 7001_ $$0P:(DE-Juel1)156345$$aBeridze, George$$b4
000862402 7001_ $$00000-0003-2366-5809$$aAvdeev, Maxim$$b5
000862402 7001_ $$0P:(DE-HGF)0$$aMuransky, Ondrej$$b6
000862402 7001_ $$0P:(DE-HGF)0$$aBrand, Helen E. A.$$b7
000862402 7001_ $$0P:(DE-HGF)0$$aGu, Qin-Fen$$b8
000862402 7001_ $$00000-0002-7187-4579$$aKennedy, Brendan J.$$b9$$eCorresponding author
000862402 773__ $$0PERI:(DE-600)1484438-2$$a10.1021/acs.inorgchem.9b00406$$gp. acs.inorgchem.9b00406$$n9$$p6143-6154$$tInorganic chemistry$$v58$$x1520-510X$$y2019
000862402 8564_ $$uhttps://juser.fz-juelich.de/record/862402/files/acs.inorgchem.9b00406.pdf$$yRestricted
000862402 8564_ $$uhttps://juser.fz-juelich.de/record/862402/files/acs.inorgchem.9b00406.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862402 909CO $$ooai:juser.fz-juelich.de:862402$$pVDB
000862402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176900$$aForschungszentrum Jülich$$b0$$kFZJ
000862402 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)137024$$aForschungszentrum Jülich$$b3$$kFZJ
000862402 9131_ $$0G:(DE-HGF)POF3-161$$1G:(DE-HGF)POF3-160$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lNukleare Entsorgung und Sicherheit sowie Strahlenforschung$$vNuclear Waste Management$$x0
000862402 9141_ $$y2019
000862402 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862402 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM : 2017
000862402 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862402 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862402 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862402 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862402 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862402 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862402 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862402 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862402 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862402 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862402 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862402 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000862402 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000862402 980__ $$ajournal
000862402 980__ $$aVDB
000862402 980__ $$aI:(DE-Juel1)IEK-6-20101013
000862402 980__ $$aI:(DE-82)080012_20140620
000862402 980__ $$aUNRESTRICTED
000862402 981__ $$aI:(DE-Juel1)IFN-2-20101013