001     862402
005     20240712084553.0
024 7 _ |a 10.1021/acs.inorgchem.9b00406
|2 doi
024 7 _ |a 0020-1669
|2 ISSN
024 7 _ |a 1520-510X
|2 ISSN
024 7 _ |a pmid:30964275
|2 pmid
024 7 _ |a WOS:000467351100086
|2 WOS
037 _ _ |a FZJ-2019-02730
082 _ _ |a 540
100 1 _ |a Murphy, Gabriel
|0 P:(DE-Juel1)176900
|b 0
245 _ _ |a Controlling Oxygen Defect Formation and Its Effect on Reversible Symmetry Lowering and Disorder-to-Order Phase Transformations in Nonstoichiometric Ternary Uranium Oxides
260 _ _ |a Washington, DC
|c 2019
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1599557369_32472
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In situ synchrotron powder X-ray diffraction measurements have demonstrated that the isostructural AUO4–x (A = alkaline earth metal cation) oxides CaUO4–x and α-Sr0.4Ca0.6UO4–x undergo a reversible phase transformation under reducing conditions at high temperatures associated with the ordering of in-plane oxygen vacancies resulting in the lowering of symmetry. When rhombohedral (space group R3̅m) CaUO4–x and α-Sr0.4Ca0.6UO4–x are heated to 450 and 400 °C, respectively, in a hydrogen atmosphere, they undergo a first-order phase transformation to a single phase structure which can be refined against a triclinic model in space group P1̅, δ-CaUO4–x and δ-Sr0.4Ca0.6UO4–x, where the oxygen vacancies are disordered initially. Continued heating results in the appearance of superlattice reflections, indicating the ordering of in-plane oxygen vacancies. Cooling ordered δ-CaUO4–x and δ-Sr0.4Ca0.6UO4–x to near room temperature results in the reformation of the disordered rhombohedral phases. Essential to the transformation is the generation of a critical amount of oxygen vacancies. Once these are formed, the transformation can be accessed continuously through thermal cycling, showing that the transformations are purely thermodynamic in origin. Stoichiometric structures of both oxides can be recovered by heating oxygen deficient CaUO4–x and α-Sr0.4Ca0.6UO4–x under pure oxygen to high temperatures. When heated in air, the amount of oxygen vacancy defects that form in CaUO4–x and α-Sr0.4Ca0.6UO4–x are found to correlate with the A site composition. The inclusion of the larger Sr2+ cation on the A site reduces defect–defect interactions, which increases the amount of defects that can form and lowers their formation temperature. The relative difference in the amount of defects that form can be understood on the basis of oxygen vacancy and U5+ disordering as shown by both ab initio calculations and estimated oxygen vacancy formation energies based on thermodynamic considerations. This difference in defect–defect interactions consequently introduces variations in the long-range ordered anionic lattice of the δ phases despite the isostructural relationship of the α structures of CaUO4–x and Sr0.4Ca0.6UO4–x. These results are discussed with respect to the influence the A site cation has upon anion defect formation and ordering and are also compared to δ-SrUO4–x, the only other material known to be able to undergo a reversible symmetry lowering and disorder-to-order transformation with increasing temperature
536 _ _ |a 161 - Nuclear Waste Management (POF3-161)
|0 G:(DE-HGF)POF3-161
|c POF3-161
|f POF III
|x 0
536 _ _ |a Atomistic modeling of radionuclide-bearing materials for safe management of high level nuclear waste. (jiek61_20181101)
|0 G:(DE-Juel1)jiek61_20181101
|c jiek61_20181101
|f Atomistic modeling of radionuclide-bearing materials for safe management of high level nuclear waste.
|x 1
536 _ _ |a Investigation of the new materials for safe management of high level nuclear waste. (jara0038_20121101)
|0 G:(DE-Juel1)jara0038_20121101
|c jara0038_20121101
|f Investigation of the new materials for safe management of high level nuclear waste.
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wang, Chun-Hai
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zhang, Zhaoming
|0 0000-0003-3273-8889
|b 2
|e Corresponding author
700 1 _ |a Kowalski, Piotr
|0 P:(DE-Juel1)137024
|b 3
700 1 _ |a Beridze, George
|0 P:(DE-Juel1)156345
|b 4
700 1 _ |a Avdeev, Maxim
|0 0000-0003-2366-5809
|b 5
700 1 _ |a Muransky, Ondrej
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Brand, Helen E. A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Gu, Qin-Fen
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Kennedy, Brendan J.
|0 0000-0002-7187-4579
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acs.inorgchem.9b00406
|g p. acs.inorgchem.9b00406
|0 PERI:(DE-600)1484438-2
|n 9
|p 6143-6154
|t Inorganic chemistry
|v 58
|y 2019
|x 1520-510X
856 4 _ |u https://juser.fz-juelich.de/record/862402/files/acs.inorgchem.9b00406.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/862402/files/acs.inorgchem.9b00406.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:862402
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176900
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)137024
913 1 _ |a DE-HGF
|l Nukleare Entsorgung und Sicherheit sowie Strahlenforschung
|1 G:(DE-HGF)POF3-160
|0 G:(DE-HGF)POF3-161
|2 G:(DE-HGF)POF3-100
|v Nuclear Waste Management
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INORG CHEM : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21