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1 - INTRODUCTION 
Eddy-covariance observations can only provide the net fluxes (of H2O and 

CO2) that emerge from plant canopies. However, for proper process 

understanding the contributions of transpiration, evaporation, photosynthesis, 

and respiration are required. Scanlon and Sahu (2008) and Scanlon and 

Kustas (2010) proposed a source partitioning method (SK10), that is based 

on: (1) high frequency raw data time series, (2) separate application of the 

flux-variance similarity theory to stomatal and non-stomatal components of 

the fluxes, and (3) assumptions on water use efficiency (WUE) on leaf-scale.  

We conducted Large Eddy Simulations (LES) for (a) contrasting canopy 

source/sink distributions, (b) varying relative magnitudes of soil sources and 

canopy sinks/sources (Fig.1), and (c) contrasting plant area density (PAD) 

distributions (affecting turbulence). SK10 was applied to the synthetic high 

frequency data and the effects of canopy type (PAD distribution), 

measurement height, sink-source-distributions, and varying assumed WUEs 

were tested regarding the partitioning performance. Here we focus on one 

PAD distribution (uniform). 

3 - SOURCE PARTITIONING METHOD 2 - LARGE EDDY SIMULATIONS 
Model: DALES (Heus et al. 2010, Ouwersloot et al. 2016)  

• Conditions: neutral 

• 72 hc x 36 hc x 32 hc with 720 x 360 x 144 nodes 

• grid resolution: 0.1 hc 

• simulation runtime: 720 hc u*
-1 

• field sampling: every 6 hc u*
-1 for last 120 hc u*

-1 

• PAI: 2 m2 m-2, uniformly distributed 

• 10 scalar sources in canopy and 1 soil source 

• H2O and CO2 fields generated from scalar fields by linear 

scaling based on source distribution 

Fig.1, top: Plant area density (PAD) distribution, cumulative plant area index (PAI) and variations of 

sink-source-distributions used to scale the LES scalar fields (left: ModelV after Sellers et al. 1992, 

right: ModelB after Ney et al. 2017), each with ten canopy sinks/sources (bars) and one soil source 

(circle). For CO2, two different soil sources were used, with the canopy sink adapted such that the net 

flux is the same. 

Fig.2, bottom: Examples of sampled synthetic high frequency data of q’ and c’ at different 

‘measurement’ heights for ModelV and ModelB (with the strong soil source). Differentiation between 

scalars originating from stomatal (green dots) and non-stomatal (yellow dots) processes. The blue 

line presents the WUE and the red line the reduced major axis regression between total q’ and c’. 

Fig.3: Method: (1) generation of synthetic high frequency data with LES, (2) application 

of SK10 to derive the contributions to the fluxes of CO2 and H2O. 

(cp: CO2 related to photosynthesis, cr: CO2 related to soil respiration, Fx: flux of x, 

hc: canopy height, qe: H2O related to evaporation, qt: H2O related to transpiration, 

u*: friction velocity at canopy top, z: height above soil surface) 
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4 - RESULTS 
• SK10 was able to approach the correct partitioning only for the strong soil source and observations within the roughness 

sublayer (maximum decorrelation) (Fig.4 top). The partitioning was sensitive to the parameterization of ρcp’cr’ (transfer 

assumption, Fig.5). Replacing a parameterized ρcp’cr’  with observed values (correcting the transfer assumption), the 

partitioning results improved and were realistic up to z ≈ 3hc (Fig.4 bottom). 

• The partitioning results were very sensitive to the assumed WUE. This sensitivity was strongly modified by the quality of 

the estimation of the correlation ρcp’cr’  (Fig.6). 

 

5 - CONCLUSIONS 
For a satisfying performance of SK10, a certain degree of decorrelation of q’ 

and c’ was needed: (1) enhanced by a clear separation between soil 

sources and canopy sinks/sources, (2) for observations within the 

roughness sublayer.  

However, due to violation of the transfer assumption, the known true input 

WUE did not yield the known true input partitioning. This could only be 

achieved after introducing correction factors for the transfer assumption. 

However, it is unclear whether the profiles of these correction factors are 

universal and could be applied to field observations. 
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Fig.6: Results of partitioning fractions for H2O (T/ET, left) and CO2 (NPP/NEE, right) fluxes 

in relation to the input WUE at a ‘measurement’ height of 2.5 hc with corrected and 

uncorrected transfer assumption. The true known imposed partitioning factors and WUE 

input are indicated by the dashed lines (T: transpiration, ET: evapotranspiration, NPP: net 

primary production, NEE: net ecosystem exchange). 

Fig.5: Comparison of real and parameterized 

correlation coefficients ρcp’cr’ and ρqt’qe’ (transfer 

assumption) and the corresponding correction 

factors (factq, factc). 
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Fig.4: Vertical profiles of inferred H2O and CO2 flux components, observed ρq’c’ and parameterized ρcp’cr’ and σcp’
2 for four sink-

source-distributions (ModelV or ModelB, low or high soil source). Top: the partitioning results of SK10 with the original 

parametrization for ρcp’cr’ ; bottom: partitioning results with correction to the transfer assumption. 


