000862431 001__ 862431
000862431 005__ 20210130001346.0
000862431 0247_ $$2doi$$a10.1038/s41396-018-0270-2
000862431 0247_ $$2ISSN$$a1751-7362
000862431 0247_ $$2ISSN$$a1751-7370
000862431 0247_ $$2Handle$$a2128/22088
000862431 0247_ $$2pmid$$apmid:30214028
000862431 0247_ $$2WOS$$aWOS:000455747900005
000862431 0247_ $$2altmetric$$aaltmetric:48232285
000862431 037__ $$aFZJ-2019-02747
000862431 082__ $$a570
000862431 1001_ $$0P:(DE-HGF)0$$aMeredith, Laura K.$$b0$$eCorresponding author
000862431 245__ $$aSoil exchange rates of COS and CO18O differ with the diversity of microbial communities and their carbonic anhydrase enzymes
000862431 260__ $$aBasingstoke$$bNature Publishing Group$$c2019
000862431 3367_ $$2DRIVER$$aarticle
000862431 3367_ $$2DataCite$$aOutput Types/Journal article
000862431 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1555999357_22955
000862431 3367_ $$2BibTeX$$aARTICLE
000862431 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862431 3367_ $$00$$2EndNote$$aJournal Article
000862431 520__ $$aDifferentiating the contributions of photosynthesis and respiration to the global carbon cycle is critical for improving predictive climate models. Carbonic anhydrase (CA) activity in leaves is responsible for the largest biosphere-atmosphere trace gas fluxes of carbonyl sulfide (COS) and the oxygen-18 isotopologue of carbon dioxide (CO18O) that both reflect gross photosynthetic rates. However, CA activity also occurs in soils and will be a source of uncertainty in the use of COS and CO18O as carbon cycle tracers until process-based constraints are improved. In this study, we measured COS and CO18O exchange rates and estimated the corresponding CA activity in soils from a range of biomes and land use types. Soil CA activity was not uniform for COS and CO2, and patterns of divergence were related to microbial community composition and CA gene expression patterns. In some cases, the same microbial taxa and CA classes catalyzed both COS and CO2 reactions in soil, but in other cases the specificity towards the two substrates differed markedly. CA activity for COS was related to fungal taxa and β-D-CA expression, whereas CA activity for CO2 was related to algal and bacterial taxa and α-CA expression. This study integrates gas exchange measurements, enzyme activity models, and characterization of soil taxonomic and genetic diversity to build connections between CA activity and the soil microbiome. Importantly, our results identify kinetic parameters to represent soil CA activity during application of COS and CO18O as carbon cycle tracers.
000862431 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000862431 588__ $$aDataset connected to CrossRef
000862431 7001_ $$00000-0002-3365-8584$$aOgée, Jérôme$$b1
000862431 7001_ $$0P:(DE-HGF)0$$aBoye, Kristin$$b2
000862431 7001_ $$00000-0002-3126-2199$$aSinger, Esther$$b3
000862431 7001_ $$0P:(DE-HGF)0$$aWingate, Lisa$$b4
000862431 7001_ $$0P:(DE-HGF)0$$avon Sperber, Christian$$b5
000862431 7001_ $$0P:(DE-HGF)0$$aSengupta, Aditi$$b6
000862431 7001_ $$0P:(DE-HGF)0$$aWhelan, Mary$$b7
000862431 7001_ $$0P:(DE-HGF)0$$aPang, Erin$$b8
000862431 7001_ $$0P:(DE-HGF)0$$aKeiluweit, Marco$$b9
000862431 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b10
000862431 7001_ $$0P:(DE-HGF)0$$aBerry, Joe A.$$b11
000862431 7001_ $$0P:(DE-HGF)0$$aWelander, Paula V.$$b12
000862431 773__ $$0PERI:(DE-600)2299378-2$$a10.1038/s41396-018-0270-2$$gVol. 13, no. 2, p. 290 - 300$$n2$$p290 - 300$$tThe ISME journal$$v13$$x1751-7370$$y2019
000862431 8564_ $$uhttps://juser.fz-juelich.de/record/862431/files/s41396-018-0270-2.pdf$$yOpenAccess
000862431 8564_ $$uhttps://juser.fz-juelich.de/record/862431/files/s41396-018-0270-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862431 909CO $$ooai:juser.fz-juelich.de:862431$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000862431 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b10$$kFZJ
000862431 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000862431 9141_ $$y2019
000862431 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862431 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000862431 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862431 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862431 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bISME J : 2017
000862431 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bISME J : 2017
000862431 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862431 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862431 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862431 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862431 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862431 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000862431 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862431 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862431 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862431 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862431 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862431 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000862431 980__ $$ajournal
000862431 980__ $$aVDB
000862431 980__ $$aUNRESTRICTED
000862431 980__ $$aI:(DE-Juel1)IBG-3-20101118
000862431 9801_ $$aFullTexts