001     862440
005     20210130001348.0
024 7 _ |a 10.1259/bjr.20180886
|2 doi
024 7 _ |a 0007-1285
|2 ISSN
024 7 _ |a 1748-880X
|2 ISSN
024 7 _ |a 2128/23057
|2 Handle
024 7 _ |a altmetric:59186739
|2 altmetric
024 7 _ |a pmid:30994036
|2 pmid
024 7 _ |a WOS:000482099400005
|2 WOS
037 _ _ |a FZJ-2019-02752
082 _ _ |a 610
100 1 _ |a Rubbert, Christian
|0 0000-0002-9461-1173
|b 0
|e Corresponding author
245 _ _ |a Machine-learning identifies parkinson's disease patients based on resting-state between-network functional connectivity
260 _ _ |a London
|c 2019
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1569996203_15601
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Data were provided in part by the Human Connectome Project, WU-Minn Consortium(Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; andby the McDonnell Center for Systems Neuroscience at Washington University.
520 _ _ |a OBJECTIVES:Evaluation of a data-driven, model-based classification approach to discriminate idiopathic Parkinson's disease (PD) patients from healthy controls (HC) based on between-network connectivity in whole-brain resting-state functional MRI (rs-fMRI).METHODS:Whole-brain rs-fMRI (EPI/TR = 2.2  s/TE = 30  ms/flip angle = 90°/resolution = 3.1 × 3.1 × 3.1  mm/acquisition time≈11  min) was assessed in 42 PD patients (medical OFF) and 47 HC matched for age and gender. Between-network connectivity based on full and L2-regularized partial correlation measures were computed for each subject based on canonical functional network architectures of two cohorts at different levels of granularity (Human Connectome Project: 15/25/50/100/200 networks; 1000BRAINS: 15/25/50/70 networks). A Boosted Logistic Regression model was trained on the correlation matrices using a nested cross-validation (CV) with 10 outer and 10 inner folds for an unbiased performance estimate, treating the canonical functional network architecture and the type of correlation as hyperparameters. The number of boosting iterations was fixed at 100. The model with the highest mean accuracy over the inner folds was trained using an non-nested 10- fold 20-repeats CV over the whole dataset to determine feature importance.RESULTS:Over the outer folds the mean accuracy was found to be 76.2 % (median 77.8%, SD 18.2, IQR 69.4 - 87.1 %). Mean sensitivity was 81 % (median 80%, SD 21.1, IQR 75 - 100 %) and mean specificity was 72.7 % (median 75%, SD 20.4, IQR 66.7 - 80 %). The 1000BRAINS 50-network-parcellation, using full correlations, performed best over the inner folds. The top features predominantly included sensorimotor as well as sensory networks.CONCLUSIONS:A rs-fMRI whole-brain-connectivity, data-driven, model-based approach to discriminate PD patients from healthy controls shows a very good accuracy and a high sensitivity. Given the high sensitivity of the approach, it may be of use in a screening setting.ADVANCES IN KNOWLEDGE:Resting-state functional MRI could prove to be a valuable, non-invasive neuroimaging biomarker for neurodegenerative diseases. The current model-based, data-driven approach on whole-brain between-network connectivity to discriminate Parkinson's disease patients from healthy controls shows promising results with a very good accuracy and a very high sensitivity.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mathys, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jockwitz, Christiane
|0 P:(DE-Juel1)145386
|b 2
|u fzj
700 1 _ |a Hartmann, Christian J
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 4
|u fzj
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 5
|u fzj
700 1 _ |a Caspers, Svenja
|0 P:(DE-Juel1)131675
|b 6
|u fzj
700 1 _ |a Eickhoff, Claudia
|0 P:(DE-Juel1)174483
|b 7
|u fzj
700 1 _ |a Sigl, Benjamin
|0 P:(DE-Juel1)171897
|b 8
700 1 _ |a Teichert, Nikolas A
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Südmeyer, Martin
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Turowski, Bernd
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Schnitzler, Alfons
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Caspers, Julian
|0 P:(DE-Juel1)144344
|b 13
773 _ _ |a 10.1259/bjr.20180886
|g p. 20180886 -
|0 PERI:(DE-600)1468548-6
|n 1101
|p 20180886
|t The British journal of radiology
|v 92
|y 2019
|x 1748-880X
856 4 _ |y Published on 2019-05-14. Available in OpenAccess from 2020-05-14.
|u https://juser.fz-juelich.de/record/862440/files/bjr.20180886.pdf
856 4 _ |y Published on 2019-05-14. Available in OpenAccess from 2020-05-14.
|x pdfa
|u https://juser.fz-juelich.de/record/862440/files/bjr.20180886.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862440
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145386
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)174483
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRIT J RADIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21