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Objective: Evaluation of a data-driven, model-based 
classification approach to discriminate idiopathic Parkin-
son’s disease (PD) patients from healthy controls (HC) 
based on between-network connectivity in whole-brain 
resting-state functional MRI (rs-fMRI).
Methods: Whole-brain rs-fMRI (EPI, TR = 2.2 s, TE = 30 ms, 
flip angle = 90°. resolution = 3.1 × 3.1 × 3.1 mm, acquisition 
time ≈ 11 min) was assessed in 42 PD patients (medical OFF) 
and 47 HC matched for age and gender. Between-network 
connectivity based on full and L2-regularized partial corre-
lation measures were computed for each subject based 
on canonical functional network architectures of two 
cohorts at different levels of granularity (Human Connec-
tome Project: 15/25/50/100/200 networks; 1000BRAINS: 
15/25/50/70 networks). A Boosted Logistic Regression 
model was trained on the correlation matrices using a 
nested cross-validation (CV) with 10 outer and 10 inner 
folds for an unbiased performance estimate, treating the 
canonical functional network architecture and the type of 
correlation as hyperparameters. The number of boosting 
iterations was fixed at 100. The model with the highest 
mean accuracy over the inner folds was trained using an 

non-nested 10-fold 20-repeats CV over the whole dataset 
to determine feature importance.
Results: Over the outer folds the mean accuracy was found 
to be 76.2% (median 77.8%, SD 18.2, IQR 69.4 – 87.1%). 
Mean sensitivity was 81% (median 80%, SD 21.1, IQR 75 – 
100%) and mean specificity was 72.7% (median 75%, SD 
20.4, IQR 66.7 – 80%). The 1000BRAINS 50-network-par-
cellation, using full correlations, performed best over 
the inner folds. The top features predominantly included 
sensorimotor as well as sensory networks.
Conclusion: A rs-fMRI whole-brain-connectivity, data-
driven, model-based approach to discriminate PD 
patients from healthy controls shows a very good accu-
racy and a high sensitivity. Given the high sensitivity of 
the approach, it may be of use in a screening setting.
Advances in knowledge: Resting-state functional MRI 
could prove to be a valuable, non-invasive neuroimaging 
biomarker for neurodegenerative diseases. The current 
model-based, data-driven approach on whole-brain 
between-network connectivity to discriminate Parkin-
son’s disease patients from healthy controls shows 
promising results with a very good accuracy and a very 
high sensitivity.
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Introduction
Parkinson's disease (PD) is the second most common neurode-
generative disorder after Alzheimer’s disease and is of growing 
relevance for public health in the ageing society. The diagnosis 
is primarily based on clinical history and neurological exam-
inations. Progressive motor symptoms are the hallmark of the 
disease, with otherwise unexplainable bradykinesia, muscular 
rigidity, rest tremor or postural instability as the main symp-
toms. Non-motor symptoms include sensory and autonomic 
dysfunction, disorders of mood and affect, as well as complex 
behavioural disorders. Especially depression or hyposmia may 
predate the clinically apparent onset of PD.1

The development of motor symptoms is primarily attributed to 
progressive loss of dopaminergic neurons in the substantia nigra, 
which results in a destabilization of the basal ganglia circuits. The 
pathogenesis behind non-motor symptoms is not fully under-
stood.1 Beyond the established basal ganglia pathways, struc-
tural and functional dysregulations in the cortico-subcortical 
networks, especially in the cortico-striatal and cortico-cortical 
connections have been observed.2,3

Even with established and well-tested diagnostic criteria 
published by the UK Parkinson’s Disease Society Brain Bank 
in 1988,4 clinical diagnosis of PD may be challenging in certain 
cases. Overall, 82.7% of PD diagnoses are accurate as confirmed 
by autopsy. The diagnostic accuracy of movement disorder 
experts was found to be 79.6% at the initial visit and improved 
to 83.9% after refinement of diagnosis on a follow-up exam-
ination. Non-experts were 73.8% accurate.5 Therefore, a robust 
biomarker would be beneficial in the diagnosis of PD and could 
significantly enhance clinical evaluation in certain diagnostic 
dilemmas.

Resting-state functional MRI (rs-fMRI) has emerged in recent 
years as a valuable, non-invasive tool to study functional connec-
tivity within or between functional networks. These resting state 
functional networks are derived from clustering concurrent and 
spontaneous fluctuations of blood-oxygenation-level-dependent 

(BOLD) signal in time-resolved MRI sequences in the absence of 
a specific task. Rs-fMRI has been widely used to study a number 
of neurodegenerative and neuropsychiatric diseases and to gain 
insights into the brain’s organization.6,7 In PD, resting-state func-
tional connectivity has repeatedly been studied under varying 
hypotheses, usually examining aberrations in specific networks 
or areas, such as the basal ganglia,8,9 sensorimotor areas,8 or areas 
related to executive function.9 For example, a negative functional 
correlation between the subthalamic nucleus and the primary 
motor cortex was predictive for a better treatment response in 
Deep Brain Stimulation (DBS) patients.10

Given the interplay of different symptoms, e.g. of motor and 
non-motor symptoms, and functional connectivity changes 
found between and across different functional networks, we 
hypothesize, that aberrations in the whole-brain connectivity in 
PD patients can be used as a non-invasive, neuroimaging-based 
biomarker. Essentially, this hypothesis is based on the emerging 
understanding of PD as a “disconnection syndrome”.11 Given 
the complexity of the problem, we applied a supervised machine 
learning (ML) technique, which can learn patterns from existing, 
complex, labelled data to generalise to previously unseen data. 
In the current study, we evaluated a data-driven, model-based, 
supervised classification approach to identify PD patients based 
on between-network functional connectivity in whole-brain 
resting-state fMRI.

Methods and materials
The study was approved by the local ethics committee and 
performed in accordance with the declaration of Helsinki. 
All subjects provided written informed consent prior to study 
inclusion.

Sample
42 patients from the local department of neurology, diagnosed 
with idiopathic PD, and 47 healthy controls (HC), without any 
record of neurological or psychiatric disorders, were included 
in the current analysis (Table  1). Patients and subjects were 
included from a pre-existing PD/HC pool9,12 by determining 

Table 1. Characteristics of the Parkinson’s disease and healthy controls sample. * MDRS was available in 41 of 42 patients

Healthy controls Parkinson’s disease patients
n 47 42

Age (years): mean ± SD 60.2 ± 8.9 61.8 ± 9.6

Sex: female/male 22 (47%) / 25 (53%) 15 (36%) / 27 (64%)

Disease duration (years): mean ± SD 9.7 ± 5.5

Modified Hoehn & Yahr stage: median (IQR) 2.75 (2-3)

UPDRS-III (OFF): median (IQR) 34 (26–38.8)

UPDRS-III (ON): median (IQR) 16.5 (12.2–25)

Levodopa Equicalent Dose (LED): mean ± SD 1062.8 ± 364.2

Mattis Dementia Rating Scale (MDRS)*: median (IQR) 140 (137–142)

Symptom lateralization: right/left 16 (38.1%) / 26 (61.9%)

Motor type: akinetic rigid/tremor dominant/mixed type 14 (33.3%) / 6 (14.3%) / 22 (52.4%)
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the largest sample where age and gender did not differ signifi-
cantly between the PD and HC subjects (two-sample t-tests for 
age, χ²-test for gender, all p > 0.1). Patients with non-idiopathic 
Parkinson syndromes, severe dementia, major depression and 
ineligibility for MRI had not been included in the pool.

Diagnosis of idiopathic PD was based on the aforementioned 
criteria by a board-certified neurologist.4 All patients were under 
long-term dopaminergic treatment with individual drug regi-
mens optimized for their individual needs, including levodopa, 
catechol-O-methyltransferase inhibitors, dopamine agonists and 
further symptomatic drugs. Rs-fMRI scans were acquired after 
at least 12 h of withdrawal of the patient’s regular dopaminergic 
medication (medical OFF).

rs-fMRI
Whole-brain rs-fMRI was acquired using an echo-planar 
imaging (EPI) sequence on a 3T MRI scanner (Siemens Trio, 
Erlangen, Germany) to obtain BOLD time series (time points 
= 300, TR = 2.2 s, TE = 30 ms, flip angle = 90°, field of view 
(FoV) = 200×200 mm axial plane, slices = 36, voxel size = 3.1 
mm3, acquisition time ≈ 11 min).

Furthermore, a T1 weighted three-dimensional magnetization 
prepared rapid gradient-echo sequence (MPRAGE, TR = 2.3 s, 
TE = 2.96 ms, TI = 900 ms, flip angle = 8°, FoV = 240×256 mm 
sagittal plane, slices = 192, voxel size = 1 mm³) was acquired for 
structural information and registration during pre-processing.

rs-fMRI pre-processing
Pre-processing and analysis of rs-fMRI was performed using 
the Oxford Centre for Functional MRI of the Brain (FMRIB) 
Software Library (FSL) v5.0.13

The first five images of the fMRI time-series were discarded 
to account for magnetic saturation effects. EPI volumes were 
motion-corrected. The six rigid-body parameter time series 
yielded from motion correction were used for later EPI signal 
denoising. Brain-extraction was performed on the motion-cor-
rected EPI volumes and the structural MRIs with FMRIB’s Brain 
Extraction Tool (BET2).14 EPIs were spatially smoothed with a 5 
mm full width at half maximum gaussian kernel and normalized 
for intensity variations over time. High-pass filtering with a 150 s 
cut-off was conducted. FMRIB’s ICA-based Xnoisifier (FIX) was 
then used to automatically denoise the rs-fMRI data.15,16 Finally, 
EPI volumes were linearly co-registered to their respective struc-
tural image, and subsequently spatially normalized by applying 
the deformations yielded from linear and non-linear registration 
of the structural image to the MNI152 standard reference space.

Between-network connectivity
Griffanti et al. suggests to use sets of healthy brains, inde-
pendent of the sample under investigation, for analysis of 
disease-related network alterations.17 Therefore, we relied 
on canonical functional network architecture from two large 
population-based samples, the Human Connectome Project 
(HCP) and 1000BRAINS.

HCP publicly released network definitions based on indepen-
dent component analysis (ICA) on elaborately acquired and 
(pre-)processed data18–20 at different levels of granularity (15, 25, 
50, 100. 200 and 300 networks; July 2017 HCP1200 Parcellation 
+ Timeseries+Netmats release: https://​db.​humanconnectome.​
org/​data/​projects/​HCP_​1200). Essentially, FMRIB’s Multivariate 
Exploratory Linear Optimized Decomposition into Indepen-
dent Components (MELODIC)’s18,21 incremental group-level 
principal component analysis (Group-PCA) from 812 subjects 
(“recon2” subjects, aged 22 to 35, with nine subjects noted as 36+) 
was fed into MELODIC’s group-level ICA (Group-ICA) applying 
spatial-ICA to generate the network definitions (extensive docu-
mentation available at https://www.​humanconnectome.​org/​
storage/​app/​media/​documentation/​s1200/​HCP1200-​DenseC-
onnectome+​PTN+​Appendix-​July2017.​pdf). Due to computa-
tional restraints the 300 network parcellation was excluded from 
the current study, while all other parcellations were used.

1000BRAINS is a population-based sample investigating the 
inter-individual variability of brain structure and function 
during aging.7 The acquisition, also on a Siemens Trio 3T, and 
the pre-processing protocol, was identical to the current study, 
except for the high-pass filtering at 100 ms (current study: 150 
ms).7,19 Functional network definitions based on group-ICA at a 
granularity of 15, 25, 50, and 70 components were derived from 
the 1000BRAINS sample using MELODIC in 267 healthy older 
adults in the same age range as the PD/HC group (mean age 61.9 
years; SD 8.8; 157 males).

The network maps from HCP and 1000BRAINS were used as 
spatial regressors on the fully pre-processed EPIs of the current 
study to extract subject-specific timeseries for each network 
using the first step of FSL’s Dual Regression.20 Resulting time-se-
ries were variance-normalized.

For each set of networks, between-network connectivity was 
calculated using FSLNets v0.6.3 (https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​
fslwiki/​FSLNets) in GNU Octave v4.0.3 (https://www.​gnu.​org/​
software/​octave/). Pearson correlations (“full correlations”) and 
L2-norm Ridge Regression (ρ = 0.01, “partial correlations”) 
between the network-specific time-series were calculated for 
each subject and transformed into Fisher’s z-scores.

Modelling
Further analysis was performed using R v3.5.1 with the caret 
v6.0–81, rsample v0.0.4, and caTools v1.17.1.1 packages (https://​
cran.​r-​project.​org/).

The upper triangle of the full and partial between-network 
correlation matrices of each subject and level of granularity were 
used for the model. Using only the upper triangle, without the 
diagonal, eliminates duplicate and non-informative features.

A boosted logistic regression model was trained on each of 
the correlation matrices to discriminate PD patients from HC. 
Essentially, boosting describes a combination of weak classifiers. 
In every iteration, a new „rule of thumb”, just slightly better than 
average, will be determined by means of an additive logistic 
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regression model. A nested cross-validation approach with 10 
outer and 10 inner folds was chosen to find an unbiased estimate 
of the model performance.22 The choice of canonical network 
architecture (1000BRAINS or HCP) and type of correlation (full 
or partial) were treated as hyperparameters to be tuned in the 
inner folds. The number of boosting iterations was fixed at 100. 
After selecting the best model with the highest mean accuracy 
over the inner folds, accuracy, sensitivity and specificity was 
calculated for the respective outer fold.

The hyperparameters yielding the mean best performance over 
the inner folds were used to determine feature importance by 
fitting a model in a non-nested, stratified, 20-repeats, 10-fold 

cross-validation over the whole dataset. Since no model-spe-
cific metric for feature importance exists, the importance of 
each feature is individually evaluated in a “filter” approach by 
means of a ROC-curve analysis and application of a series of 
cut-offs. The area under the curve is used as a measure of feature 
importance.23 Since there is no model-specific metric, the 
feature importance was scaled from 0 to 1 and the features with 
a resulting scaled importance >0.8 were evaluated more closely. 
Furthermore, in that model, the patients misclassified in more 
than half of the repeats were explored to gain an insight into the 
classification process.

Results
Evaluation was performed for each of the canonical network 
definitions from both samples (HCP: 15, 25, 50, 100 and 
200; 1000BRAINS: 15, 25, 50 and 70) and for both types of 
correlation, fixed at 100 boosting iterations. After nested 
cross-validation the mean accuracy was found to be 76.2% 
(median 77.8%, SD 18.2, IQR 69.4–87.1%) over the outer 
folds. Mean sensitivity was 81% (median 80%, SD 21.1, IQR 
75–100%) and mean specificity was 72.7% (median 75%, SD 
20.4, IQR 66.7–80%). Table 2 shows the individual results of 
the outer folds.

The model yielding the highest mean accuracy over the inner folds 
during nested cross-validation was found to be the 1000BRAINS 
50-network parcellation in the full correlations approach. As an 
example of model performances in the inner folds, the aggre-
gated accuracies are shown in Figure 1. Classification on partial 
correlations showed an overall weaker performance over the 
inner folds. Here, the HCP 25-network-parcellation performed 
best, which was also the best performing parcellation for full 
correlations within the HCP sample.

Table 2. Individual results of each outer fold during nested 
cross-validation

Outer 
fold

Canonical 
network 

architecture
Type of 

correlation
Mean 

accuracy
1 HCP 25 Partial 33.3%

2 HCP 25 Full 85.7%

3 1000BRAINS 25 Full 88.9%

4 1000BRAINS 70 Full 66.7%

5 1000BRAINS 50 Full 77.8%

6 1000BRAINS 50 Full 77.8%

7 1000BRAINS 70 Full 100%

8 1000BRAINS 50 Full 77.8%

9 1000BRAINS 50 Full 66.7%

10 HCP 25 Full 87.5%

Figure 1. Exemplary aggregated accuracies over the inner folds during the nested cross-validation for each canonical network 
architecture and type of correlation at 100 boosting iterations shown as a Box-Whisker-Plot.

http://birpublications.org/bjr
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In the non-nested cross-validation approach, mean accuracy 
was 80.3% (median 80.9%, SD 3.7, IQR 77.8–82.1%). Mean 
sensitivity was 84.5% (median 84.5%, SD 4.3, IQR 81.9–87.9%) 
and mean specificity was 75.7% (median 76.3%, SD 5.7, IQR 
72.1–80%). In analysis of feature importance, four features 
were found to have a scaled feature importance greater than 
0.8 (Figure 2). The most important inter-network connection 
was found to be between a right lateralized and a left later-
alized subpart of the sensorimotor network (SMN), each 
comprising the (pre-)supplementary motor area ((pre)SMA), 
ipsilateral primary sensorimotor cortex (SMC), thalamus and 
cerebellum. The second most important connection was found 
between a dorsal visual network comprising the parietooccip-
ital cortex bilaterally and the auditory network, located at the 
superior temporal lobe and posterior insula bilaterally, and 

additionally included the cingulate cortex. This was followed 
by a correlation of the same dorsal visual network with the 
inferior part of the SMN, which comprised the primary motor 
and sensory cortex, posterior insula, thalamus, midbrain, 
and cerebellar areas bilaterally. The fourth most important 
correlation was between the aforementioned right lateralized 
SMN and a bihemispheric primary motor/premotor network 
located dorsally close to the midline.

In the exploration of 9 repeatedly misclassified patients, it was 
noted, that 6 (66.6%) had a right-lateralized onset of symptoms, 
whereas only 38.1% of PD patients in the whole sample were 
right-lateralized regarding motor symptoms.

Discussion
This study aimed to evaluate a predictive model to discrimi-
nate PD from HC on the basis of between-network connec-
tivity in whole-brain rs-fMRI. Our results show a very good 
accuracy and a very high sensitivity.

The ML model evaluated in this study is based on between-net-
work connectivity, which has been investigated in a number of 
studies in PD.24–26 For example, Gratton et al found that, using 
a graph-theoretical approach, alterations in between-network 
connectivity are more pronounced in PD than compared to 
within-network connectivity.27 Our results, showing very good 
accuracy in predicting PD based on between-network connec-
tivity, are in line with these studies, and are further backing the 
concept of PD as a “disconnection syndrome”.11

There are a number of studies applying ML to identify PD, each 
with reasonable success. For example, an elaborate ensemble 
model trained on recorded speech samples was used to detect 
PD.28 Furthermore, ML based on structural MR images was used 
to discriminate PD from progressive supranuclear palsy (PSP),29 
and an approach based on resting-state functional connectivity 
was used to separate PD patients with and without mild cogni-
tive impairment.30 In addition, whole-brain functional connec-
tivity analyses have been conducted to gain further insights into 
the disease.31–33 Other studies have proposed using functional 
connectivity of single networks as a neuroimaging biomarker, for 
example of the Basal Ganglia Network (BGN).8,21 However, so far, 
no study has evaluated rs-fMRI based whole-brain between-net-
work connectivity as a neuroimaging-based biomarker to diag-
nose PD.

The best-performing model in the inner folds during nested 
cross-validation was based on 50 networks derived from the 
1000BRAINS cohort, which showed comparable results over 
inner folds and the unbiased performance expectations as deter-
mined by the outer folds. The model trained using a non-nested 
cross-validation approach on the whole dataset showed slightly 
higher performance measurements, which were overall in line 
with the performance estimates as determined by the nested 
cross-validation.

The analyses with 15 networks did not perform as well, most 
likely due to the network definitions being too coarse with 

Figure 2. The top four features of the optimal model with a 
scaled feature importance >0.8.
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multiple intrinsic connectivity networks being merged into 
one component. Higher granularity (≥100) networks exhibited 
worse performance, likely due to the increasing fragmentation of 
intrinsic connectivity networks into sub networks. For example, 
consistent networks like the Default Mode Network (DMN) will 
be split into multiple components, which might lack a biolog-
ical correlate at higher dimensionality. In this regard, our study 
might potentially indicate, that about 25–70 networks best reflect 
the actual, neurobiologically meaningful granularity of intrinsic 
connectivity networks and are a reasonable number to conduct 
network-based functional connectivity analyses.

Partial correlations showed a weaker performance compared 
to full correlations. Partial correlations provide more specific 
information about the direct connection between two networks 
by correcting for the influence of all other networks, as a strong 
(full) correlation between two networks could arise from the 
strong correlation of each network to a third network. However, 
the content of information about the subjects’ entire connectivity 
is lowered by the mathematical procedure of regularization in 
each pair of networks. This reduced or less general information 
about connectivity within each feature for partial correlations 
might be the reason why full correlations performed better in 
our model-based classification than partial correlations.

Within the partial correlations, the 25-network-model from HCP 
performed best, which also performed best in full correlations 
across the HCP models. The reason, why the best performing 
HCP model comprised 25 components, while for 1000BRAINS 
the 50-network-model performed best, might possibly be 
found in data acquisition and processing. By means of special-
ized HCP-MR-scanners and sophisticated artefact-removal 
approaches, clean fMRI data of higher spatial and timing resolu-
tion is provided. For example, network definitions are based on a 
surface-based approach,34 rather than volume-based processing 
as used in 1000BRAINS and our sample. Cleaner data of higher 
resolution could mean, that a smaller number of potentially 
more meaningful components are sufficient for discrimination. 
At this point in time, the number of actual networks in the brain 
still remains elusive and a higher dimensionality bears the risk of 
introducing artificial networks by segmenting actual networks.

The 1000BRAINS acquisition and pre-processing protocol is 
almost identical to the current study and included subjects of 
a similar age range. HCP acquired healthy young adults aged 
22–35 years,6 while 1000BRAINS included participants aged 
55–85 years.7 Age-related reorganization of functional networks 
has been demonstrated in the 1000BRAINS sample,19 and for 
example age-related functional connectivity reductions in the 
DMN and occipital visual networks have been shown.35 Both the 
similar acquisition and pre-processing workflow, as well as the 
similarly aged sample could explain the better performance of 
the 1000BRAINS sample in comparison to HCP.

It has to be noted, that the performance results of the non-nested 
cross-validation approach, which was used to determine 
feature importance, are probably too optimistic, since the 
selection of optimal hyperparameters was based on the entire 

dataset. However, the analysis of feature importance of the 
best performing model does allow for insights into the model. 
The SMN, which is separated into multiple subnetworks in the 
1000BRAINS 50-network parcellation, played a crucial role in 
the features most important to the model. This is in line with a 
number of studies, which have repeatedly shown alterations in 
sensorimotor areas in patients with PD, for example aberrations 
in the primary motor cortex and SMA during finger movement 
or decreased functional connectivity within motor areas.8,35–37 
Using a graph-theory based resting-state fMRI analysis, Gratton 
et al. found, that, among all tested networks, the SMN showed 
the greatest alterations between PD patients and controls.27 In 
this regard, the importance of the SMN in the network pathology 
of PD is further underlined by the feature importance of our 
classification approach. The second and third most important 
network pair contained the dorsal visual network. Interestingly, 
the auditory network was the counterpart in the second most 
important pair, which has only been sparsely reported on in 
PD.36 However, disintegration between these two sensory areas 
as well as between the dorsal visual and sensorimotor networks 
may hint to impaired sensory integration for motor function, 
which is commonly observed in PD.37 Especially network alter-
ations in the dorsal visual (where) stream,38 which processes 
spatial visual information for sensorimotor integration,39 might 
be associated with impaired visuo-spatial integration for motor 
function in PD, and may thus contribute to the importance of the 
third most important network pair, i.e. the dorsal visual network 
and inferior part of the SMN.37,40 The more frequent appearance 
of the right subpart of the SMN in the most important features 
might also relate to the overall better classification performance 
of patients showing left-lateralized motor symptoms, which were 
slightly overrepresented in our sample.

One of the limitations of the current study is the small number 
of included patients, although larger samples are rarely avail-
able in rs-fMRI analyses of PD. Patient’s diagnosis of PD in the 
current study is based on clinical diagnosis and autopsy-proven 
confirmation was not available. As noted, clinical diagnosis in a 
follow-up visit to a movement disorder expert is only 83.9% accu-
rate.5 However, patients included in the current study had been 
seen multiple times by local movement disorder experts and, 
due to the mean disease duration of 9.7 years, atypical forms of 
Parkinsonism should be likely ruled out in the majority of cases. 
However, ground-truth in our study is still based on clinical diag-
nosis, which could have impacted the accuracy of the model. 
Future prospective studies, where diagnosis of PD is clinically 
reconsidered in case of misclassification by a classification model, 
as well as data samples substantiated by autopsy-proven diagnoses 
would be beneficial to further evaluate the use of machine-learning 
approaches in the evaluation of neurodegenerative disorders. 
Furthermore, the patients had been under dopaminergic medica-
tion for an extended period of time and were imaged in an induced 
medical OFF phase. Hence, it cannot be ruled out that some effects 
of the long-term dopaminergic medication might have influenced 
the changes observed between both subject groups, e.g. by reor-
ganization of functional networks.41 However, 12h of withdrawal 
reliably induce a Levodopa-deprived state since the plasma half-
life of Levodopa is 1–3 h.

http://birpublications.org/bjr
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One of the main hurdles in widely deploying a model-based 
approach, as the one presented in the current study, is the very high 
heterogeneity in disease, rs-fMRI acquisition and pre-processing. 
For example, Badea et al. showed that global changes of functional 
connectivity are non-reproducible across three different datasets, 
while only some functional connectivity changes between “indi-
vidual brain region pairs” were marginally consistent.42 Uniform 
rs-fMRI acquisition and pre-processing are therefore mandatory. 
With the current approach, and network definitions based on an 
almost identical data acquisition and pre-processing, we achieved 
accuracies similar to those of clinical experts and outperformed 
non-experts,5 although it has to be noted, that confirmation of 
diagnosis by autopsy would be desirable future studies. In this 
regard, the very good performance of our model is particularly 
remarkable regarding the quite heterogeneous PD sample included 
in the current study, which comprises patients from all stages of 
the disease, a wide range of disease duration and motor symptom 
severity as well as all motor subtypes. This should make our clas-
sification results generalizable and robust. However, larger, multi 
center, heterogeneous patient samples are needed to build even 
more robust models, which are then applicable to smaller, local 
patient collectives.

There are some studies investigating classification of PD based 
on structural T1 weighted imaging. For example, Chen et 
al. applied different approaches to detect different diseases, 
yielding an accuracy of 68–80% for PD.43 The previously 
mentioned study of Salvatore et al. applied a support vector 
machine model based on structural T1 weighted images to 
differentiate PD, PSP, and HC, yielding an accuracy of more 
than 90%.29 A straight-forward comparison of these results 
and the current study is not suitable, since the methodolo-
gies strongly varied and there are no structural metrics, which 
could capture inter-network connectivity. Furthermore, clas-
sification approaches of theses previous studies are not as 
conservative as in the current study and reported results could 
be too optimistic in regard to a general population. However, 

future studies should explore multi modality approaches by 
combining functional and structural neuroimaging informa-
tion in a comparative way, such as the addition of diffusion 
tensor imaging (DTI) or a voxel-based morphometry (VBM) 
approach. Such approaches have for example been successfully 
applied to Alzheimer’s disease patients,44,45 but have so far not 
been widely studied in a predictive classification setting in 
Parkinson’s disease.

Given the high sensitivity, a model-based approach could be 
useful in a screening setting. For example, it could be used in 
individuals with only mild symptoms of a movement disorder 
to decide if, how, and when to refer or follow up. Also, a larger, 
more diverse and carefully labelled sample of patients with a 
movement disorder could potentially allow to not only screen for 
those disorders, but also maybe differentiate idiopathic PD and 
atypical parkinsonian syndromes, such as multi system atrophy 
or PSP.

Conclusion
A model-based, data-driven approach to discriminate PD 
patients from healthy controls is feasible and shows a very 
good accuracy and a high sensitivity. 50 independent network 
components from 1000BRAINS’s canonical functional network 
architecture performed best when analysing whole-brain func-
tional connectivity with a full correlation approach. Given the 
high sensitivity, a model-based approach may be of use in a 
screening setting when trained on a larger sample.
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