000862442 001__ 862442
000862442 005__ 20240711113739.0
000862442 0247_ $$2doi$$a10.1016/j.nme.2019.01.006
000862442 0247_ $$2Handle$$a2128/22100
000862442 0247_ $$2WOS$$aWOS:000460107500045
000862442 037__ $$aFZJ-2019-02754
000862442 082__ $$a624
000862442 1001_ $$00000-0002-4846-4598$$aEffenberg, F.$$b0$$eCorresponding author
000862442 245__ $$aInvestigation of 3D effects on heat fluxes in performance-optimized island divertor configurations at Wendelstein 7-X
000862442 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2019
000862442 3367_ $$2DRIVER$$aarticle
000862442 3367_ $$2DataCite$$aOutput Types/Journal article
000862442 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1556029080_23035
000862442 3367_ $$2BibTeX$$aARTICLE
000862442 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862442 3367_ $$00$$2EndNote$$aJournal Article
000862442 520__ $$aThe 3D effects on divertor heat loads have been investigated for performance-optimized island divertor configurations at Wendelstein 7-X with 3D modeling and IR camera measurements. A new high mirror configuration optimized for more stable island divertor operation due to reduced bootstrap currents and a more even heat load distribution between the main divertor targets has been investigated for the first time numerically and experimentally.Transport calculations with EMC3-EIRENE show a strong dependence of the heat flux distributions on the configurations and the details of the 3D island geometry. IR camera measurements confirm the predictions concerning the global heat load distributions for the standard configuration but show more even distributions between the main wetted divertor plates in the high mirror configurations. The local heat load profiles show offsets in their position of up to 5 cm to each other and averaged peak heat fluxes varying between 0.5 MWmand 2.2 MWmdepending on the divertor module considered. These heat flux asymmetries complicate the local matching of profiles between experiment and 3D modeling.The 3D equilibrium of a high mirror high-performance scenario predicted by the HINT code has been investigated with EMC3-EIRENE for the first time to anticipate plasma response in higher performance scenarios. The island divertor is preserved fordespite enhanced stochasticity. However, the islands are increased in size while the path lengths for parallel transport are reduced causing a substantial change in the divertor heat flux patterns.
000862442 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000862442 588__ $$aDataset connected to CrossRef
000862442 7001_ $$0P:(DE-HGF)0$$aNiemann, H.$$b1
000862442 7001_ $$0P:(DE-Juel1)176537$$aFeng, Y.$$b2
000862442 7001_ $$0P:(DE-HGF)0$$aGeiger, J.$$b3
000862442 7001_ $$0P:(DE-Juel1)6790$$aSchmitz, O.$$b4
000862442 7001_ $$00000-0001-7618-6305$$aSuzuki, Y.$$b5
000862442 7001_ $$0P:(DE-Juel1)165352$$aAli, A.$$b6
000862442 7001_ $$0P:(DE-HGF)0$$aBarbui, T.$$b7
000862442 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b8
000862442 7001_ $$00000-0002-3527-5106$$aFrerichs, H.$$b9
000862442 7001_ $$0P:(DE-HGF)0$$aJakubowski, M.$$b10
000862442 7001_ $$0P:(DE-Juel1)159297$$aKönig, R.$$b11
000862442 7001_ $$0P:(DE-HGF)0$$aKrychowiak, M.$$b12
000862442 7001_ $$0P:(DE-HGF)0$$aPuig Sitjes, A.$$b13
000862442 7001_ $$00000-0002-9407-7636$$aSchmitt, J. C.$$b14
000862442 7001_ $$0P:(DE-HGF)0$$aSunn Pedersen, T.$$b15
000862442 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2019.01.006$$gVol. 18, p. 262 - 267$$p262 - 267$$tNuclear materials and energy$$v18$$x2352-1791$$y2019
000862442 8564_ $$uhttps://juser.fz-juelich.de/record/862442/files/1-s2.0-S2352179118302394-main.pdf$$yOpenAccess
000862442 8564_ $$uhttps://juser.fz-juelich.de/record/862442/files/1-s2.0-S2352179118302394-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862442 909CO $$ooai:juser.fz-juelich.de:862442$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176537$$aForschungszentrum Jülich$$b2$$kFZJ
000862442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6790$$aForschungszentrum Jülich$$b4$$kFZJ
000862442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165352$$aForschungszentrum Jülich$$b6$$kFZJ
000862442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b8$$kFZJ
000862442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159297$$aForschungszentrum Jülich$$b11$$kFZJ
000862442 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000862442 9141_ $$y2019
000862442 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862442 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000862442 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862442 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000862442 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862442 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862442 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862442 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000862442 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862442 920__ $$lyes
000862442 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000862442 9201_ $$0I:(DE-Juel1)VDB811$$kIEF-3$$lBrennstoffzellen$$x1
000862442 9201_ $$0I:(DE-Juel1)PTJ-IKK-20170908$$kPTJ-IKK$$lInnovation für Klimaschutz und Klimawandelanpassung$$x2
000862442 9801_ $$aFullTexts
000862442 980__ $$ajournal
000862442 980__ $$aVDB
000862442 980__ $$aUNRESTRICTED
000862442 980__ $$aI:(DE-Juel1)IEK-4-20101013
000862442 980__ $$aI:(DE-Juel1)VDB811
000862442 980__ $$aI:(DE-Juel1)PTJ-IKK-20170908
000862442 981__ $$aI:(DE-Juel1)IFN-1-20101013