001     862442
005     20240711113739.0
024 7 _ |a 10.1016/j.nme.2019.01.006
|2 doi
024 7 _ |a 2128/22100
|2 Handle
024 7 _ |a WOS:000460107500045
|2 WOS
037 _ _ |a FZJ-2019-02754
082 _ _ |a 624
100 1 _ |a Effenberg, F.
|0 0000-0002-4846-4598
|b 0
|e Corresponding author
245 _ _ |a Investigation of 3D effects on heat fluxes in performance-optimized island divertor configurations at Wendelstein 7-X
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1556029080_23035
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The 3D effects on divertor heat loads have been investigated for performance-optimized island divertor configurations at Wendelstein 7-X with 3D modeling and IR camera measurements. A new high mirror configuration optimized for more stable island divertor operation due to reduced bootstrap currents and a more even heat load distribution between the main divertor targets has been investigated for the first time numerically and experimentally.Transport calculations with EMC3-EIRENE show a strong dependence of the heat flux distributions on the configurations and the details of the 3D island geometry. IR camera measurements confirm the predictions concerning the global heat load distributions for the standard configuration but show more even distributions between the main wetted divertor plates in the high mirror configurations. The local heat load profiles show offsets in their position of up to 5 cm to each other and averaged peak heat fluxes varying between 0.5 MWmand 2.2 MWmdepending on the divertor module considered. These heat flux asymmetries complicate the local matching of profiles between experiment and 3D modeling.The 3D equilibrium of a high mirror high-performance scenario predicted by the HINT code has been investigated with EMC3-EIRENE for the first time to anticipate plasma response in higher performance scenarios. The island divertor is preserved fordespite enhanced stochasticity. However, the islands are increased in size while the path lengths for parallel transport are reduced causing a substantial change in the divertor heat flux patterns.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Niemann, H.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Feng, Y.
|0 P:(DE-Juel1)176537
|b 2
700 1 _ |a Geiger, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schmitz, O.
|0 P:(DE-Juel1)6790
|b 4
700 1 _ |a Suzuki, Y.
|0 0000-0001-7618-6305
|b 5
700 1 _ |a Ali, A.
|0 P:(DE-Juel1)165352
|b 6
700 1 _ |a Barbui, T.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 8
700 1 _ |a Frerichs, H.
|0 0000-0002-3527-5106
|b 9
700 1 _ |a Jakubowski, M.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a König, R.
|0 P:(DE-Juel1)159297
|b 11
700 1 _ |a Krychowiak, M.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Puig Sitjes, A.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Schmitt, J. C.
|0 0000-0002-9407-7636
|b 14
700 1 _ |a Sunn Pedersen, T.
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1016/j.nme.2019.01.006
|g Vol. 18, p. 262 - 267
|0 PERI:(DE-600)2808888-8
|p 262 - 267
|t Nuclear materials and energy
|v 18
|y 2019
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862442/files/1-s2.0-S2352179118302394-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862442/files/1-s2.0-S2352179118302394-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862442
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176537
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)6790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)165352
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)159297
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)VDB811
|k IEF-3
|l Brennstoffzellen
|x 1
920 1 _ |0 I:(DE-Juel1)PTJ-IKK-20170908
|k PTJ-IKK
|l Innovation für Klimaschutz und Klimawandelanpassung
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)VDB811
980 _ _ |a I:(DE-Juel1)PTJ-IKK-20170908
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21