000862488 001__ 862488
000862488 005__ 20220930130210.0
000862488 0247_ $$2doi$$a10.1038/s41598-019-43323-2
000862488 0247_ $$2Handle$$a2128/22544
000862488 0247_ $$2altmetric$$aaltmetric:63709872
000862488 0247_ $$2pmid$$apmid:31320696
000862488 0247_ $$2WOS$$aWOS:000475845400062
000862488 037__ $$aFZJ-2019-02794
000862488 082__ $$a600
000862488 1001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir Hossein$$b0$$eCorresponding author$$ufzj
000862488 245__ $$aThe Young-Feynman controlled double-slit electron interference experiment
000862488 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000862488 3367_ $$2DRIVER$$aarticle
000862488 3367_ $$2DataCite$$aOutput Types/Journal article
000862488 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1602056539_17614
000862488 3367_ $$2BibTeX$$aARTICLE
000862488 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862488 3367_ $$00$$2EndNote$$aJournal Article
000862488 520__ $$aThe key features of quantum mechanics are vividly illustrated by the Young-Feynman two-slit thought experiment, whose second part discusses the recording of an electron distribution with one of the two slits partially or totally closed by an aperture. Here, we realize the original Feynman proposal in a modern electron microscope equipped with a high brightness gun and two biprisms, with one of the biprisms used as a mask. By exciting the microscope lenses to conjugate the biprism plane with the slit plane, observations are carried out in the Fraunhofer plane with nearly ideal control of the covering of one of the slits. A second, new experiment is also presented, in which interference phenomena due to partial overlap of the slits are observed in the image plane. This condition is obtained by inserting the second biprism between the two slits and the first biprism and by biasing it in order to overlap their images.
000862488 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000862488 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x1
000862488 588__ $$aDataset connected to CrossRef
000862488 7001_ $$0P:(DE-Juel1)144965$$aBoothroyd, Christopher Brian$$b1
000862488 7001_ $$0P:(DE-HGF)0$$aYücelen, Emrah$$b2
000862488 7001_ $$0P:(DE-HGF)0$$aFrabboni, Stefano$$b3
000862488 7001_ $$0P:(DE-HGF)0$$aGazzadi, Gian Carlo$$b4
000862488 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b5
000862488 7001_ $$0P:(DE-HGF)0$$aPozzi, Giulio$$b6
000862488 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-43323-2$$gVol. 9, no. 1, p. 10458$$n1$$p10458$$tScientific reports$$v9$$x2045-2322$$y2019
000862488 8564_ $$uhttps://juser.fz-juelich.de/record/862488/files/30037821980009083338INVOIC2676142733001%20%28002%29.pdf
000862488 8564_ $$uhttps://juser.fz-juelich.de/record/862488/files/30037821980009083338INVOIC2676142733001%20%28002%29.pdf?subformat=pdfa$$xpdfa
000862488 8564_ $$uhttps://juser.fz-juelich.de/record/862488/files/s41598-019-43323-2.pdf$$yOpenAccess
000862488 8564_ $$uhttps://juser.fz-juelich.de/record/862488/files/s41598-019-43323-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862488 8767_ $$82676142733$$92019-04-23$$d2019-04-25$$eAPC$$jZahlung erfolgt
000862488 909CO $$ooai:juser.fz-juelich.de:862488$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000862488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b0$$kFZJ
000862488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b5$$kFZJ
000862488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b6$$kFZJ
000862488 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000862488 9141_ $$y2019
000862488 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862488 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862488 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862488 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862488 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000862488 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000862488 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862488 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862488 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862488 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862488 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862488 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862488 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862488 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862488 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862488 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862488 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862488 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862488 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862488 920__ $$lyes
000862488 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000862488 980__ $$ajournal
000862488 980__ $$aVDB
000862488 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000862488 980__ $$aAPC
000862488 980__ $$aUNRESTRICTED
000862488 9801_ $$aAPC
000862488 9801_ $$aFullTexts