001     862489
005     20240712100953.0
024 7 _ |a 10.5194/gmd-12-1643-2019
|2 doi
024 7 _ |a 1991-959X
|2 ISSN
024 7 _ |a 1991-9603
|2 ISSN
024 7 _ |a 2128/22136
|2 Handle
024 7 _ |a WOS:000465633700004
|2 WOS
037 _ _ |a FZJ-2019-02795
082 _ _ |a 550
100 1 _ |a Tegen, Ina
|0 0000-0003-3700-3232
|b 0
|e Corresponding author
245 _ _ |a The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation
260 _ _ |a Katlenburg-Lindau
|c 2019
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1556538905_7000
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We introduce and evaluate aerosol simulations with the global aerosol–climate model ECHAM6.3–HAM2.3, which is the aerosol component of the fully coupled aerosol–chemistry–climate model ECHAM–HAMMOZ. Both the host atmospheric climate model ECHAM6.3 and the aerosol model HAM2.3 were updated from previous versions. The updated version of the HAM aerosol model contains improved parameterizations of aerosol processes such as cloud activation, as well as updated emission fields for anthropogenic aerosol species and modifications in the online computation of sea salt and mineral dust aerosol emissions. Aerosol results from nudged and free-running simulations for the 10-year period 2003 to 2012 are compared to various measurements of aerosol properties. While there are regional deviations between the model and observations, the model performs well overall in terms of aerosol optical thickness, but may underestimate coarse-mode aerosol concentrations to some extent so that the modeled particles are smaller than indicated by the observations. Sulfate aerosol measurements in the US and Europe are reproduced well by the model, while carbonaceous aerosol species are biased low. Both mineral dust and sea salt aerosol concentrations are improved compared to previous versions of ECHAM–HAM. The evaluation of the simulated aerosol distributions serves as a basis for the suitability of the model for simulating aerosol–climate interactions in a changing climate.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 1
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Neubauer, David
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ferrachat, Sylvaine
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Siegenthaler-Le Drian, Colombe
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bey, Isabelle
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schutgens, Nick
|0 0000-0001-9805-6384
|b 5
700 1 _ |a Stier, Philip
|0 0000-0002-1191-0128
|b 6
700 1 _ |a Watson-Parris, Duncan
|0 0000-0002-5312-4950
|b 7
700 1 _ |a Stanelle, Tanja
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Schmidt, Hauke
|0 0000-0001-7977-5041
|b 9
700 1 _ |a Rast, Sebastian
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kokkola, Harri
|0 0000-0002-1404-6670
|b 11
700 1 _ |a Schultz, Martin
|0 P:(DE-Juel1)6952
|b 12
700 1 _ |a Schröder, Sabine
|0 P:(DE-Juel1)16212
|b 13
|u fzj
700 1 _ |a Daskalakis, Nikos
|0 0000-0002-2409-0392
|b 14
700 1 _ |a Barthel, Stefan
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Heinold, Bernd
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Lohmann, Ulrike
|0 0000-0001-8885-3785
|b 17
773 _ _ |a 10.5194/gmd-12-1643-2019
|g Vol. 12, no. 4, p. 1643 - 1677
|0 PERI:(DE-600)2456725-5
|n 4
|p 1643 - 1677
|t Geoscientific model development
|v 12
|y 2019
|x 1991-9603
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862489/files/gmd-12-1643-2019.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862489/files/gmd-12-1643-2019.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862489
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)6952
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)16212
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOSCI MODEL DEV : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21