000862492 001__ 862492
000862492 005__ 20210130001413.0
000862492 0247_ $$2doi$$a10.3389/fphar.2019.00400
000862492 0247_ $$2Handle$$a2128/22137
000862492 0247_ $$2pmid$$apmid:31040786
000862492 0247_ $$2WOS$$aWOS:000464599600001
000862492 0247_ $$2altmetric$$aaltmetric:59080667
000862492 037__ $$aFZJ-2019-02798
000862492 082__ $$a610
000862492 1001_ $$0P:(DE-HGF)0$$aSachs, Julia$$b0
000862492 245__ $$aNovel 3,4-Dihydroisocoumarins Inhibit Human P-gp and BCRP in Multidrug Resistant Tumors and Demonstrate Substrate Inhibition of Yeast Pdr5
000862492 260__ $$aLausanne$$bFrontiers Media$$c2019
000862492 3367_ $$2DRIVER$$aarticle
000862492 3367_ $$2DataCite$$aOutput Types/Journal article
000862492 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565850204_12422
000862492 3367_ $$2BibTeX$$aARTICLE
000862492 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862492 3367_ $$00$$2EndNote$$aJournal Article
000862492 520__ $$aMultidrug resistance (MDR) in tumors and pathogens remains a major problem in the efficacious treatment of patients by reduction of therapy options and subsequent treatment failure. Various mechanisms are described to be involved in the development of MDR with overexpression of ATP-binding cassette (ABC) transporters reflecting the most extensively studied. These membrane transporters translocate a wide variety of substrates utilizing energy from ATP hydrolysis leading to decreased intracellular drug accumulation and impaired drug efficacy. One treatment strategy might be inhibition of transporter-mediated efflux by small molecules. Isocoumarins and 3,4-dihydroisocoumarins are a large group of natural products derived from various sources with great structural and functional variety, but have so far not been in the focus as potential MDR reversing agents. Thus, three natural products and nine novel 3,4-dihydroisocoumarins were designed and analyzed regarding cytotoxicity induction and inhibition of human ABC transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) in a variety of human cancer cell lines as well as the yeast ABC transporter Pdr5 in Saccharomyces cerevisiae. Dual inhibitors of P-gp and BCRP and inhibitors of Pdr5 were identified, and distinct structure-activity relationships for transporter inhibition were revealed. The strongest inhibitor of P-gp and BCRP, which inhibited the transporters up to 80 to 90% compared to the respective positive controls, demonstrated the ability to reverse chemotherapy resistance in resistant cancer cell lines up to 5.6-fold. In the case of Pdr5, inhibitors were identified that prevented substrate transport and/or ATPase activity with IC50 values in the low micromolar range. However, cell toxicity was not observed. Molecular docking of the test compounds to P-gp revealed that differences in inhibition capacity were based on different binding affinities to the transporter. Thus, these small molecules provide novel lead structures for further optimization.
000862492 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000862492 536__ $$0G:(DE-Juel1)hkf7_20170501$$aForschergruppe Gohlke (hkf7_20170501)$$chkf7_20170501$$fForschergruppe Gohlke$$x1
000862492 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x2
000862492 588__ $$aDataset connected to CrossRef
000862492 7001_ $$0P:(DE-HGF)0$$aDöhl, Katja$$b1
000862492 7001_ $$0P:(DE-HGF)0$$aWeber, Anja$$b2
000862492 7001_ $$0P:(DE-HGF)0$$aBonus, Michele$$b3
000862492 7001_ $$0P:(DE-HGF)0$$aEhlers, Ferdinand$$b4
000862492 7001_ $$0P:(DE-HGF)0$$aFleischer, Edmond$$b5
000862492 7001_ $$0P:(DE-HGF)0$$aKlinger, Anette$$b6
000862492 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b7$$ufzj
000862492 7001_ $$0P:(DE-Juel1)128906$$aPietruszka, Jörg$$b8$$ufzj
000862492 7001_ $$0P:(DE-HGF)0$$aSchmitt, Lutz$$b9
000862492 7001_ $$0P:(DE-HGF)0$$aTeusch, Nicole$$b10$$eCorresponding author
000862492 773__ $$0PERI:(DE-600)2587355-6$$a10.3389/fphar.2019.00400$$gVol. 10, p. 400$$p400$$tFrontiers in pharmacology$$v10$$x1663-9812$$y2019
000862492 8564_ $$uhttps://juser.fz-juelich.de/record/862492/files/fphar-10-00400.pdf$$yOpenAccess
000862492 8564_ $$uhttps://juser.fz-juelich.de/record/862492/files/fphar-10-00400.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862492 909CO $$ooai:juser.fz-juelich.de:862492$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b7$$kFZJ
000862492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128906$$aForschungszentrum Jülich$$b8$$kFZJ
000862492 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000862492 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x1
000862492 9141_ $$y2019
000862492 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862492 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862492 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000862492 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHARMACOL : 2017
000862492 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000862492 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000862492 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862492 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862492 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862492 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862492 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review
000862492 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862492 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862492 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862492 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862492 920__ $$lyes
000862492 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000862492 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x1
000862492 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x2
000862492 9201_ $$0I:(DE-Juel1)IBOC-20090406$$kIBOC$$lInstitut für Bioorganische Chemie (HHUD)$$x3
000862492 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x4
000862492 9801_ $$aFullTexts
000862492 980__ $$ajournal
000862492 980__ $$aVDB
000862492 980__ $$aI:(DE-Juel1)JSC-20090406
000862492 980__ $$aI:(DE-Juel1)ICS-6-20110106
000862492 980__ $$aI:(DE-Juel1)NIC-20090406
000862492 980__ $$aI:(DE-Juel1)IBOC-20090406
000862492 980__ $$aI:(DE-Juel1)IBG-1-20101118
000862492 980__ $$aUNRESTRICTED
000862492 981__ $$aI:(DE-Juel1)IBI-7-20200312