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1 Abstract 

Modulating protein activity with small molecules binding to cryptic pockets offers great 

opportunities to overcome hurdles in drug design. Cryptic sites are atypical binding sites in 

proteins that are closed in the absence of a stabilizing ligand and are thus inherently difficult to 

identify. Many studies have proposed methods to predict cryptic sites. However, a general 

approach to prospectively sample open conformations of these sites and to identify cryptic 

pockets in an unbiased manner suitable for structure-based drug design remains elusive. Here, 

we describe an all-atom, explicit cosolvent, molecular dynamics (MD) simulations-based 

workflow to sample the open states of cryptic sites and identify opened pockets, in a manner 

that does not require a priori knowledge about these sites. Furthermore, the workflow relies on 

a target-independent parameterization that only distinguishes between binding pockets for 

peptides or small-molecules. We validated our approach on a diverse test set of seven proteins 

with crystallographically determined cryptic sites. The known cryptic sites were found among 

the three highest-ranked predicted cryptic sites, and an open site conformation was sampled and 

selected for most of the systems. Crystallographic ligand poses were well reproduced by 

docking into these identified open conformations for five of the systems. When the fully open 

state could not be reproduced, we were still able to predict the location of the cryptic site, or 

identify other cryptic sites that could be retrospectively validated with knowledge of the protein 

target. These characteristics render our approach valuable for investigating novel protein targets 

without any prior information. 
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2 Introduction 

Proteins constitute by far the largest group of biological macromolecules whose function 

can be modulated by small molecules.1 They commonly interact with their protein target via 

binding sites, concave clefts on the protein surface.2 These binding sites are in most cases stable, 

even in the absence of a binding ligand.3 In contrast, “cryptic” (or “transient”) pockets require 

the presence of a ligand to open from a closed (apo) state.4-6 Such cryptic sites have been 

recognized as valuable targets in drug design, particularly with regard to the discovery of 

allosteric modulators.3, 5 In most cases, known cryptic sites have been identified serendipitously 

by means of X-ray crystallography in conjunction with screening or fragment tethering.3 While 

these experimental approaches might be applicable to deliberately target yet unidentified 

cryptic sites of a protein of interest, they are typically cost and labor intensive. Thus, fast 

computational approaches that can predict potential cryptic sites starting from a given apo 

structure are greatly needed. A successful prediction requires two steps: First, efficient sampling 

of the closed apo structure is necessary to generate conformations of the cryptic sites in an open 

state. Second, accurate identification is required to select one or a few individual cryptic sites 

from the sampled conformational ensemble. For a computational approach to be a valuable 

prospective tool, the sampling and identification must be performed in an unbiased manner. 

Here, unbiased refers to the ability of the method to yield accurate results for a range of targets 

without the necessity of a priori target-specific information or parameterization. 

Molecular dynamics (MD) simulations have proven to be successful in sampling cryptic 

sites.4, 7-9 Inspired by the application of mixed-solvent MD simulations to identify hot spots and 

binding sites,10-12 the incorporation of cosolvents, small probe molecules added to the solvent, 

was found to improve the sampling of the open state.11-15 Different agents have been proposed 

as cosolvents, including (halogenated or hydroxylated) benzene and isopropanol.11-13, 15, 16 More 

recently, mixed-solvent MDs were combined with enhanced MD techniques, namely 

accelerated MDs and Hamiltonian Replica Exchange simulations.14, 16 While the sampling 

could be improved, the introduction of further simulation parameters makes deriving a general, 

broadly applicable simulation protocol challenging. Kokh et al. proposed non-equilibrium MD 

protocols to sample cryptic sites with a focus on slow protein motions.17 These protocols are 

based on local perturbations of the protein structure. The authors applied identical simulation 

protocols to four protein systems, to our knowledge the broadest study where results for a 

consistent simulation protocol were reported. While shown to be successful in revealing the 

flexible elements of the binding sites of these four systems, the described protocols required a 

priori knowledge about the presence of a cryptic site. 
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Unlike the sampling, the identification of cryptic sites, with or without prior information 

about the cryptic site, has been addressed much less frequently. In a case study on β-lactamase, 

Bowman and colleagues used clustering, pocket identification, mutual information, and, later, 

Markov state models to analyze very extensive MD simulations.8, 9 They were able to predict 

more than 50 potential cryptic sites on a single protein. However, other studies claimed that 

only few of those might actually be genuine cryptic sites.6, 18 Although Bowman et al. later 

substantiated the existence of and communication with the active site for two of the predicted 

pockets,8 this discussion stresses the experimental difficulty to validate cryptic sites with 

respect to their existence, let alone (functional) relevance, and highlights the necessity of 

predictions with high specificity. Kokh and coworkers developed the tool TRAPP19 to monitor 

the dynamics of a given binding site and detect transient pockets. Yet again, TRAPP requires 

the a priori definition of the binding site.19 Kimura and coworkers adapted a mixed-solvent 

protocol for hotspot detection to identify cryptic sites.15 They showed partial or full opening of 

cryptic sites in eight systems and the existence of highly favorable hotspots therein. However, 

different cosolvents were used for the different test systems, and, in a few cases, the merging 

of hotspots was done manually during the hotspot clustering procedure. Therefore, it is unlikely 

that a common protocol was applied for all eight test systems. While all above methods are 

based on the identification of cryptic sites from a conformational ensemble, Cimermancic et al. 

developed an interesting alternative.20 By training support vector machines on residue features, 

they were able to map potential cryptic site locations onto protein structures. Yet, although 

certain residue features are optionally derived from MD simulations in this approach, the cryptic 

sites’ open conformations were not explicitly sampled and, thus, are not available for 

subsequent drug design applications. Hence, many studies have investigated the sampling of 

cryptic sites, and few have studied the combined sampling and identification of cryptic sites. 

However, a method that applies a general protocol to prospectively sample and identify cryptic 

sites suitable for structure-based drug design in an unbiased manner has remained elusive. 

Again, unbiased refers to a method that samples cryptic site conformations and identifies 

cryptic site locations without a priori information on the cryptic site or the necessity of a target-

dependent parameterization. 

In the present study, we developed a method to sample and prospectively identify cryptic 

sites that does not rely on a priori knowledge about these sites. First, we evaluated different 

cosolvents to identify the best choice to sample cryptic sites. Second, using this single 

cosolvent, we generated MD ensembles for all proteins in our test set. Third, we devised a post-

processing workflow that specifically identifies cryptic sites from MD ensembles and yields 
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representative structures of these pockets in the open state. Finally, we validated these 

representative structures by testing whether a known crystallographic binder of the cryptic site 

could be docked into the sampled pocket conformations.  

Our method builds upon all-atom, explicit cosolvent MD simulations. Cosolvent 

simulations have been frequently used to identify binding sites and hotspots therein (see ref. 21 

for a review), and the application of cosolvents to specifically enhance the opening of cryptic 

sites has been described.11-16 However, no single, generally applicable MD protocol has 

emerged so far. Thus, we systematically test different concentrations of multiple cosolvents to 

identify the, on average, best cosolvent condition to sample cryptic sites. With this cosolvent, 

multiple simulations are run for each protein in our test set. From the resulting MD ensembles, 

our method identifies regions on the protein with a higher likelihood to form pockets than in 

simulations conducted in water only. The use of MD simulations in water as a reference state 

reduces the number of false positive pockets. Such identified regions, or “pocket cores”, are 

then used to screen for corresponding structures in the MD ensembles, which are clustered to 

identify representatives as starting points for structure-based drug design applications. The 

workflow is validated on a set of seven protein systems for which cryptic sites, associated with 

diverse conformational changes, are crystallographically known. This validation not only 

assesses the possibility to sample and identify the cryptic sites in question without using a priori 

information about these pockets, but also includes the re-docking of the crystallographic ligands 

into the representatives extracted from the MD ensembles.  
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3 Methods 

Structure Preparation 
The apo and holo crystal structures of Aldose Reductase (PDB IDs 1x96/4prr), Bcl-xL 

(PDB IDs 1r2d/4ehr), β-lactamase (PDB IDs 1jwp/1pzo), HSP90 (PDB IDs 1yer/1uyd), 

Interleukin-2 (PDB IDs 1m47/1m48), MDM2 (PDB IDs 1z1m/3jzk), and p38α (PDB IDs 

1wbs/3hvc) were retrieved from the Protein Data Bank22 (Figure 1). For PDB ID 1z1m, an 

NMR structure, only the first model was used, and hydrogens were removed before the 

following preparation step. Apo structures were prepared for MD simulations using the 

Protein Preparation Wizard23, 24 of the Schrӧdinger suite (release 2017-2). Crystallized water 

molecules and additives were removed. Bond orders were assigned, hydrogens and disulfide 

bonds were added, and protonation states and conformational flips of histidine, asparagine, and 

glutamine side chains were assigned. N- and C-termini and chain breaks were capped using N-

methyl amide (NME) and acetyl (ACE) capping groups, respectively. Missing atoms in residue 

side chains (which only occurred in Interleukin-2) were modelled using Prime25-27. 

Molecular Dynamics Simulations (General Information) 

The Amber16 suite of programs28 was used for all simulations. Unless otherwise mentioned, 

settings for MD simulations were taken from ref. 29. The ff14SB force field30 was used for 

protein residues and the GAFF2 force field31 for small organic molecules. For NPT simulations, 

the Berendsen barostat with a pressure relaxation time of 1.0 ps was used.  

Preparation of Solvent Boxes 

Solvent boxes with defined cosolvent concentrations were prepared for simulations of the test 

systems. For this, TIP3P water molecules were placed in a box of 203 Å3 (ethanol) or 303 Å3 

(isopropanol, phenol) using PackMol32 (version 16.344) together with a number of organic 

solvent molecules matching the desired volume concentration (5%, 10%, 15%, or 20%). The 

force field parameters for ethanol (ETA) and isopropanol (IPA) were taken from ref. 33. For 

phenol (IPH), atomic partial charges were fitted to reproduce electrostatic potentials calculated 

by ab initio methods using the RESP procedure as described in ref. 29. The force field 

parameters were assigned by the parmchk2 module of the Amber suite in agreement with the 

GAFF2 force field. The resulting boxes were minimized and equilibrated using the sander 

module. The boxes were minimized using the steepest descent and conjugate gradient methods 

for 5000 steps each. For equilibration, the systems were simulated at 300 K for 100 ps using 

canonical ensemble (NVT) conditions and subsequently for 50 ps using isothermal-isobaric 

(NPT) conditions to adjust the density. The skinnb parameter for particle mesh Ewald (PME) 
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summation was set from 2 to 1 Å. This was required to avoid the radius of direct Ewald 

summation for nonbonded contributions (PME cutoff + skinnb) exceeding the box size. 

Water/Cosolvent/Protein Molecular Dynamics Simulations 

The tleap module was used to solvate the prepared protein structures with the prepared solvent 

boxes. The protein structures were placed in a truncated octahedron with a margin of at least 

12 Å and neutralized using Na+ or Cl- ions, as required. All simulations were run using the GPU 

accelerated version of PMEMD34. Initially, the systems were minimized using the steepest 

descent and conjugate gradient methods for 5000 steps each. The solute was restrained to the 

initial coordinates using harmonic restraints. This minimization cycle was repeated three times, 

using force constants for the restraints of 25 kcal mol-1 Å-2, 5 kcal mol-1 Å-2, and zero, 

respectively. The systems were heated in two steps of 50 ps each, both using a time step of 1 fs 

and the Langevin thermostat set to a collision frequency of 2.0 ps-1. First, the systems were 

heated to 100 K using NVT conditions, then to 300 K using NPT conditions. Densities were 

allowed to adapt during additional 200 ps of NPT simulations. During heating and density 

adaptation, the solute was restrained as during minimization, using a force constant of 

5 kcal mol-1 Å-2. The positional restraints were gradually reduced over 80 ps after density 

adaptation. The systems were then simulated for 200 ps in the NVT ensemble, which were 

excluded from analysis. For the evaluation of (co-)solvent effects, each such prepared system 

was simulated for an additional 500 ns. Snapshots were stored every 20 ps. For the 

identification of cryptic sites (only for water and IPH10), a total of ten independent replicas 

were generated by randomizing the velocities during the heating stage. 

Pocket Identification 

We used PocketAnalyzerPCA 1.335 to detect pockets for all snapshots from the MD simulations. 

PocketAnalyzerPCA is a grid-based pocket detection method, i.e. each identified pocket is 

represented by a set of grid points forming a negative imprint (henceforth referred to as a pocket 

grid P). It uses three parameters for pocket detection, the degree of buriedness (dob), the 

minimum number of neighbors (mnb), and the maximum cluster size (mcs). To evaluate the 

effect of cosolvents on the opening of cryptic sites, these parameters were set to 10, 8, and 100 

(dob, mnb, and mcs) for test systems that have a peptidic native ligand (Bcl-xL, Interleukin-2, 

MDM2) binding to the cryptic site and to 12, 8, and 100 (dob, mnb, and mcs) for test systems 

binding a small molecule in the cryptic site (ALR, β-lactamase, HSP90, p38α). The smaller dob 

parameters allows PocketAnalyzerPCA to identify even shallow pockets, which are typical for 

protein-protein interfaces36, 37. A grid spacing of 0.8 Å was used consistently. 
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Evaluation of (Co-)Solvent Effects On Cryptic Site Sampling 

To evaluate the effect of different cosolvents and their concentrations on the formation of 

cryptic sites, pocket grids identified during MD simulations by PocketAnalyzerPCA were 

compared with reference grids, representing the locations of known cryptic pockets. For each 

test system, the reference grids were defined around those ligand atoms that bind to a cryptic 

site, as follows. Each retrieved holo structure was aligned to the corresponding apo structure 

using Chimera 1.1138, and the ligand that binds to the cryptic site was selected. Typically, only 

parts of the ligand bind to the actual cryptic site, while the rest binds to a continuously open 

(non-cryptic) pocket of the binding site or extend into the solvent. To truly focus on the cryptic 

site, ligand atoms within a radius of 2 Å around the atoms of the apo structure, i.e., ligand atoms 

that would cause a steric clash in the apo structure, were identified. Finally, a grid was built 

within a 2.5 Å radius around each of those atoms (henceforth referred to as the reference grid), 

matching the orientation, localization, and spacing of the pocket grids generated by 

PocketAnalyzerPCA. Note that the reference grids slightly exceed the actually accessible cryptic 

pockets in the holo structure because they penetrate the van der Waals volume of the receptors 

by approximately 0.8 Å (due to the 2.5 Å radius). Without this “grace volume”, i.e., when using 

the actual pocket grids identified in the holo structures, the detection of pocket opening during 

the MD trajectories is highly sensitive to the side chain conformations in the holo structure. The 

overlap between the reference grid and a pocket grid is calculated according to eq. (1).  

ሻࡾ,ࡼሺ࢖ࢇ࢒࢘ࢋ࢜࢕ ൌ ෍ࢾሺࡾ,ࢍሻ
ࡼ∋ࢍ

ࢎ࢚࢏࢝, ࢾ ൌ ൜
૚, ࢌ࢏ ࢍ ∈ ࡾ
૙, ࢋ࢙࢏࢝࢘ࢋࢎ࢚࢕

 (1)

Here, g denotes a grid point in the pocket grid P, R denotes the reference grid, and δ is a delta 

function. The overlapሺܲ, ܴሻ is zero for a pocket grid P that does not overlap with the cryptic 

site, and its maximum is |ܴ|. The “accessible cryptic volume” (ACV) in an MD snapshot, i.e., 

the magnitude of opening of the cryptic site, is quantified using eq. (2).  

࢏ࢂ࡯࡭ ൌ
∑ ,࢐,࢏ࡼሺ࢖ࢇ࢒࢘ࢋ࢜࢕ ሻ࢐ࡾ

∑ ,࢐,࢕࢒࢕ࢎࡼሺ࢖ࢇ࢒࢘ࢋ࢜࢕ ሻ࢐ࡾ
 (2)

 

where ௜ܲ,௝ and ௛ܲ௢௟௢,௝ denote the pocket grids for the jth pocket in the ith MD snapshot and the 

holo structure, respectively. The denominator scales the ACV to the accessible volume in the 

holo structure, which is required since the reference grid exceeds the actual cryptic site (vide 

supra). ACV = 1 implies that the volumes of the cryptic site in the respective MD snapshot and 

in the holo structure are equal in terms of the number of grid points, while minor side-chain 

rearrangements are possible. The ith MD snapshot was considered in an open state if ܥܣ ௜ܸ ൒ 1, 
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i.e., the volume of the cryptic site in the respective MD snapshot is as large or larger than in the 

holo structure (Figure 2). 

Identification of Cryptic Sites Using Pocket Cores 

To identify those regions on the protein surface where pockets are frequently present, the pocket 

grids identified throughout one or more trajectories were combined to a summary grid S. A 

summary grid includes all grid points that are in any pocket of any snapshot of that combined 

MD ensemble (eq. 3): 

ܵ ൌ ൛݃ห∀ ݅, ݆: ݃ ∈ ௜ܲ,௝ൟ (3)

where ௜ܲ,௝ is the pocket grid for the jth pocket in the ith MD snapshot. Every grid point of the 

summary grid has an associated occupancy, Occg, which is the relative number of snapshots in 

the ensemble in which this grid point has been observed (eq. 4). 

ࢍࢉࢉࡻ ൌ
∑ ,ࢍሺࢾ ࢐,࢏࢐ሻ,࢏ࡼ

ࡺ
ࢎ࢚࢏࢝, ࢾ ൌ ൜

૚, ࢌ࢏ ࢍ ∈ ࢐,࢏ࡼ
૙, ࢋ࢙࢏࢝࢘ࢋࢎ࢚࢕

 (4)

δ is a delta function, and ܰ is the total number of snapshots of a given simulation or set of 

simulations. As each grid point can only be in one pocket grid j for each snapshot i, the limit of 

the sum in the numerator is ܰ, and the upper limit of ܱܿܿ௚ is one. In turn, ܱܿܿ௚ ൌ 1 indicates 

that g is part of the volume of a pocket in every snapshot. Groups of grid points with high 

occupancy indicate recurring pockets over an ensemble (Figure 3A). Due to side-chain 

fluctuations, the occupancies of grid points within a pocket will generally increase from the 

periphery to the center (or “core”) (Figure 3C, left panel). To identify cryptic pockets, 

difference grids were computed by subtracting the occupancy values of summary grids of the 

simulations with and without cosolvent: 

૚െ૛ࡰ ൌ ൛ࢍหࢍ ∈ ૚ࡿ ∪ ;	૛ࡿ ࢍࢉࢉࡻ	 ൌ ૚ࡿ,ࢍࢉࢉࡻ െ ૛ࡿ,ࢍࢉࢉࡻ  ࢍ∀ ∉ :ሼ૚,૛ሽࡿ ሼ૚,૛ሽࡿ,ࢍࢉࢉࡻ ൌ ૙	ൟ (5)

with Occg,S{1,2} denoting the occupancy of a grid point in a summary grid for simulations with 

or without cosolvent, respectively. 

Phenol (IPH) was found to be the best cosolvent to identify cryptic sites at a volume 

concentration of 10% (IPH10, see Results section for the evaluation of cosolvent compositions, 

Figure 2). Consequently, “pocket cores” were identified from the difference grid ܦூ௉ுଵ଴ିௐ஺். 

Pocket cores are subsets of grid points in such a difference grid with positive occupancies, 

indicating regions where pockets form more frequently in the presence of phenol as cosolvent, 

i.e., they constitute potential cryptic sites. The definition of a lower bound occupancy threshold 

to identify such regions did not appear straightforward to us, as the tendency of pocket opening 

caused by a cosolvent likely depends on that cosolvent, other simulation conditions including 
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the extent of convergence, and the intrinsic probability for opening of the cryptic site itself. 

Instead, we considered pocket cores as sets of grid points with a locally increased occupancy 

compared to the surrounding grid points.  

To provide an unambiguous way for its identification, a pocket core was defined as an isolated 

group of connected and highly occupied grid points, as follows. First, the difference grid is 

converted to a graph, where each grid point is a node, and edges indicate a direct spatial 

neighborhood of two nodes. Neighbors are defined as adjacent grid points along x-, y-, and z-

directions and all possible diagonals, resulting in, at most, 26 neighbors per node. Second, nodes 

are gradually removed from the graph in the order of increasing occupancy, i.e., the graph is 

“depleted” of low-occupancy nodes (Figure 3B). For this, the lower occupancy threshold is 

increased in steps of 0.001. Upon the removal of nodes (and their respective edges), the initial 

graph disconnects into subgraphs. Third, after each removal step, nodes with less than four 

neighbors are iteratively removed, and connected components are identified in the resulting 

graph. The removal of nodes based on the number of neighbors accelerates the separation of 

connected components and smoothens the resulting pocket cores. A connected component is 

then considered a pocket core if it fulfills additional constraints: I) The number of nodes in a 

connected component (i.e., grid points in a pocket core) must be between 120 and 300 nodes 

(about 60 to 150 Åଷ, for the used grid spacing of 0.8 Å), which has been empirically identified 

as best range for the used test systems. Note that these thresholds are defined for the pocket 

cores and the actual pockets will be mostly larger (see section “Pocket selection”). II) A 

connected component must be > 2.5 Å away from a “floppy end”. A floppy end is defined as a 

stretch of five residues before a capping group, except for those residues that are in a secondary 

structure element other than turn or bend for more than 70% of the simulation time; the 

secondary structure propensity for each residue was calculated using the cpptraj module39 of 

the Amber suite. This additional constraint was implemented because such floppy ends tend to 

generate false positive pockets in our experience. Identified connected components were 

mapped back onto the grid, ranked according to their average occupancy value, and reported as 

pocket cores. Unless otherwise noted, all above described steps were implemented in-house 

using Python programs (see Listing S1). 

Pocket Selection, Clustering, and Docking 

The similarity between a pocket core and a pocket grid P is calculated based on the number of 

overlapping grid points. As the identified pocket cores, by design, are smaller than the largest 

pocket grids found for a certain binding site, the asymmetric Tversky index40 was used as 

similarity measure. The Tversky parameters α and β were set to 0.75 and 0.25, respectively, 
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which favors pocket grids that are a superset of the pocket core. Hence, pockets larger than the 

pocket core are preferred. Pocket grids with a Tversky index > 0.6 were selected from the MD 

ensemble, together with their protein structures. All steps were implemented in-house using 

Python programs (see Listing S2). 

Subsequently, the structures selected for a given pocket core were clustered based on the heavy 

atom RMSD of the binding site residues. The binding site residues were defined as those 

residues with at least four atoms within 5 Å of the pocket core. Structures were clustered using 

the DBSCAN algorithm as implemented in cpptraj with ε = 1 Å and the minpoints parameter 

set to 4. Clusters with less than ~0.1% of the sampled conformations were excluded from further 

analysis, which corresponds to 300 members in our setup. 

For docking, the cluster representatives and the structures with the largest pocket volume (with 

respect to the pocket grid) were used. Docking grids were calculated using Schrodinger’s 

Glide41-43 software (release 2018-1). The binding site was defined by the above selected binding 

site residues using an ASL (Atom Specification Language) expression. The reference crystal 

structures were prepared using the Protein Preparation Wizard. The ligands binding to the 

cryptic sites were extracted and docked using Glide with SP scoring. Twenty ligand poses were 

generated and optimized using the built-in post-docking optimization routines, and the heavy 

atom RMSD to the input pose was calculated. These settings are comparable to those of a 

prospective docking application. The docking pose with the lowest RMSD to the input structure 

was considered the best pose to assess to what extent the crystallized pose could be reproduced. 

We have not considered the docking score to identify the best pose for the following reasons. 

The docking trials described where used as a means to validate whether the automatically 

sampled and selected pockets are i) open and ii) resemble the open state in such a way that a 

ligand can bind at all. In contrast, the docking score is influenced by the performance of the 

scoring function for the specific protein and ligand. In fact, even when re-docking the ligands 

into their respective crystal structures, only two cases were observed in which the best pose by 

score and by RMSD were identical (Table S1). Furthermore, only for half of the docking runs, 

the best pose by score showed an RMSD less than 2 Å (Table S1). 



Cryptic pockets – Schmidt, Boehm, McClendon, Torella, Gohlke 12 

4 Results and Discussion 

Evaluation Dataset 

Seven proteins for which crystallographic structures have shown the opportunity to form cryptic 

sites were selected from literature as test systems7-9, 15, 19. At least two crystal structures were 

available for all test systems: one in the apo state, with the cryptic site being closed, and one in 

the holo state, with the cryptic site being open. The test systems include Aldose reductase 

(ALR), Interleukin-2 (IL-2), Mouse double minute 2 homolog (MDM2), Mitogen-activated 

protein kinase p38α, β-lactamase (β-Lac), B-cell lymphoma-extra large (Bcl-xL), and Heat 

shock protein 90 (HSP90) (Figure 1). They differ with respect to the conformational change 

they undergo upon the close-to-open transition of the cryptic site. These conformational 

changes vary from being dominated by single side chain movements such as Leu300 in ALR19, 

44 or Phe42 in IL-219, 45, breathing-like motions46 of the pocket as in MDM247 and p38α19, 48, 

major backbone and side-chain rearrangements in β-Lac49, transitions of secondary structure 

elements (HSP9019, 50), or the combination of multiple conformational changes throughout the 

binding interface (Bcl-xL13, 51, 52). All proteins are well recognized test systems and have been 

tested in different studies on cryptic sites before.7-9, 15, 19 Hence, we consider our dataset 

relevant, diverse, and challenging. Especially for HSP90 and β-Lac, the sampling of the cryptic 

site using MD simulations has been acknowledged as difficult.16, 17 With seven proteins, our 

evaluation dataset is also amongst the largest ones that have been used for cryptic site 

prediction. Kimura and coworkers used eight structures, which were selected from a dataset 

compiled by Cimermancic et al.20 Except for p38α, however, we are not aware of comparable 

studies on the MD simulations-based sampling of cryptic sites for these eight structures. A 

comparison of the two datasets is thus difficult. Furthermore, the authors used different solvents 

for the identification of cryptic sites for different proteins, where in this study, several 

cosolvents were evaluated but the pocket identification was based on a single cosolvent. 

Evaluation of Cosolvent Compositions for Sampling Cryptic Pockets 

In order to allow prospective applications, we intended to identify the overall best cosolvent 

condition to foster the opening of cryptic sites during MD simulations. The test systems were 

simulated in the presence of varying volume concentrations (5%, 10%, 15%, and 20%) of the 

cosolvents ethanol (ETA), isopropanol (IPA) and phenol (IPH). A volume concentration of 5% 

has been proposed in other mixed-solvent studies15, 53, 54 but we presumed that higher 

concentrations of cosolvent will have a larger effect on the formation of cryptic sites. The three 

selected cosolvents were used because they are neutral and have an amphipathic character, and 

should thus be able to bind to and stabilize hydrophobic cryptic sites. Furthermore, they mimic 
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side chains of amino acids and should be able to displace those during simulations. The choice 

of isopropanol and phenol is further corroborated by a recent study15, indicating that 

isopropanol and resorcinol (benzene-1,3-diol) can induce pocket opening. 

For each solvent, the fraction of frames in which the cryptic site is open was assessed (Figure 

2A) by measuring the accessible cryptic volume (ACV, eq. 2). The ACV is rigorously defined, 

and we argue that this metric is a more system-independent and direct assessment of the opening 

of a cryptic site than those proposed by other authors, such as the set of residues lining the 

binding site, projections of inter-residue distances around the binding site, or selected backbone 

dihedrals15-17. Not unexpectedly, our results indicate that the test systems are differently 

susceptible to the opening of cryptic sites: In IL-2 and MDM2, the cryptic sites open readily in 

the presence of cosolvents, whereas they are less frequently observable for other proteins in the 

test set, especially β-Lac and HSP90, which is in line with the large conformational changes 

required and the challenging sampling process.16, 17 

In simulations considering water only, the known cryptic sites open to full extent (ACV  1, 

i.e., the observed volume is equal to or larger than the volume of the holo pocket) only in < 1.5% 

of the combined simulation time. In contrast, organic molecules as cosolvents increase the 

fraction of frames with open cryptic sites. At concentrations of 15% or above, however, we 

observed unfolding events in several MD trajectories. Hence, we discourage the use of such 

high concentrations of cosolvents. Averaged over the seven test systems, cryptic pockets open 

significantly (p < 0.05) more frequently (> 35%) upon the addition of 10% phenol (henceforth 

denoted as IPH10). Note that, as our assessment of cryptic site formation is rather strict, low 

rates for β-Lac and Bcl-xL may conceal that cryptic sites open at least partially. 

In ALR, where the conformational change upon pocket opening is highly localized, this can be 

clearly seen as sudden increase in ACV. The pocket opens after about 100 ns and remains open 

for the rest of the simulation time (Figure 2B). Interestingly, this opening was not observed for 

all concentrations of IPH (cf. ALR-IPH15 in Figure 2), which indicates the necessity to perform 

multiple, independent MD simulations. We observed a flip of the Φ backbone dihedral of 

Leu300 upon pocket opening (Figure S1), which is consistent with the opening mechanism 

described by other authors using cosolvent-free MD simulations at elevated temperatures, and 

structural changes observed in crystal structures.55 This confirms that the observed opening of 

the pocket is not an artifact of our simulations, but resembles the expected mechanism. A 

selected snapshot from the ALR simulation (Figure 2C, highlighted in purple) furthermore 

shows that the overall structure remains intact after more than 400 ns of simulation time. The 
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sampled conformation closely resembles the crystal structure with Leu300 flipped out of the 

cryptic site, and one of the phenol molecules mimics the position of the nitrofuran moiety of 

the crystal ligand. To conclude, based on our systematic evaluation across seven relevant and 

diverse test systems, we consider IPH10, i.e., a volume concentration of 10% phenol, as the 

best cosolvent composition to sample cryptic pockets for prospective identification, and thus 

applied it throughout the remaining simulations. 

Unbiased Identification of Cryptic Sites 

To prospectively identify cryptic sites, ten independent trajectories were simulated for each test 

system with and without the addition of 10% phenol as cosolvent. The radial distribution 

functions for oxygens of water (Figure S2A) are as expected for TIP3P water, and those for C1 

atoms of phenol are below 1.5 for distances > 10 Å in all test systems (Figure S2B), which 

indicates the absence of large phenol aggregates or a phase separation under the chosen 

simulation conditions. The RMS average correlation (RAC)56 was calculated for the combined 

trajectories to monitor convergence of the simulations (Figure S3). The RAC drops to about 

1 Å and 0.5 Å for the simulations with and without cosolvent, respectively, after a lag time of 

about 2 µs for the combined simulations. The RAC curves show a steady decrease from this 

point onwards, indicating the absence of large conformational changes. The principal 

component analysis of heavy atom coordinates of pocket-lining atoms indicates that the 

sampled space covers the conformations of the crystal structures very well, except for HSP90 

(Figures S4-S10; see also next section for discussion). Furthermore, visual inspection revealed 

an opening of the cryptic pockets on all test systems; only partial opening was observed for the 

most challenging test systems, Bcl-xL, β-Lac, and HSP90 (Table 1). For an unbiased 

identification, pocket grids (see Methods section for definition) were calculated throughout all 

simulations using PocketAnalyzerPCA. Summary (eq. 3) and difference grids (eq. 5) (Figure 3A) 

were calculated accordingly. Difference grids are a means to focus the identification on sites 

that are more frequently open in the presence of phenol as cosolvent than in pure water. 

Subsequently, pocket cores were identified from the difference grids (Figure 3B, C). Finally, 

they are ranked according to their average occupancy (eq. 4, 5), which is approximately the 

fraction of simulation time that a pocket was more frequently open at this location when the 

system was simulated with cosolvent plus water than when simulated with water alone. 

The largest number of pocket cores (seven) was identified in p38α (Figure 4A), which is also 

the largest protein in the test set (> 350 amino acids). Even with the large number of pockets 

identified, the known cryptic site was matched by the pocket core on the first rank (Table 1). 

Additional cryptic pocket cores were mainly found on the surface close to helix αC and between 
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helices αD, αE and αF (Figure 4A, Table 1). Encouragingly, these additional pockets have also 

been described in another computational study on the dynamics of p38α.57 Furthermore, two of 

these pockets are either part of a known protein-protein interface (docking groove/CD/ED 

pocket) or match the position of a fragment in a CDK2 crystal structure.57 In contrast to p38α, 

only two pocket cores were found for ALR and MDM2 (Table 1); again, the known cryptic 

sites were successfully matched by the best ranked pocket cores in both cases.  

Overall, for all test systems except -Lac (discussed further below), pocket cores matching the 

location of the known cryptic sites were identified within the three top ranked pockets without 

tailoring settings for the different targets, with half of the identified cryptic cores ranked at the 

top. We consider this result a significant advancement over existing methods for cryptic pocket 

sampling and identification, as no a priori knowledge of pocket location, target-dependent 

preferable cosolvent or other parameters for pocket identification were used, in contrast to 

previously described methods.15, 19. The two parameter sets used for PocketAnalyzerPCA reflect 

fundamental differences in pockets binding small molecules versus peptides, which in future 

studies allows one to tune cryptic pocket identification based on the type of ligand desired to 

bind at this location, consistent with previous structural observations comparing how proteins 

bind small molecules and other proteins or peptides differently at the same site37. 

Structural Assessment of Sampled and Identified Cryptic Pockets 

In ALR, MDM2, and p38α, the known cryptic site was correctly matched by the highest ranking 

pocket core. The sampled conformations resembled the conformations observed in the crystal 

structures according to visual inspection, and were further validated by PCA of the pocket-

lining atoms (Figures S4-S10) as well as by docking experiments (see next section). 

In IL-2, the identified pocket core matches the cryptic site in the IL-2Rα binding site, which is 

blocked by Phe42 in the apo structure (Figure 5). The distribution of the χ1 angle of Phe42, 

which has been described as a key metric for pocket opening58, revealed a shift from about -60° 

(corresponding to the apo structure) to about -180° (corresponding to the holo structure) (Figure 

S11). Interestingly, the ratio of the height of the peaks at -180° and -60°, respectively, is about 

1:2 (open:closed) in our simulations without cosolvent. This ratio is higher than in other MD59 

or mixed-solvent MD studies54 of IL-2, which indicates that the cryptic site opens, although to 

a smaller extent, even in MD simulations without cosolvent. This explains the low average 

occupancy, which causes the pocket core to be ranked only third. Next to the IL-2Rα binding 

site, a second cryptic site has been described in IL-2,60 which shows coupling to the first one.59 

The difference grid DIPH10-WAT clearly showed that also for this site the open conformation is 

sampled in the cosolvent simulations (Figure S12). However, this site is not considered a pocket 
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core due to its proximity to the loop between helices B and C,45 which is not resolved in the 

starting structure (PDB 1m47), and hence, this site is excluded (see section “Methods” for 

details on the identification of pocket cores). Thus, not identifying this second site does not 

reflect a weakness of our approach but a limitation of the starting structure. 

In Bcl-xL, two pocket cores were identified matching the crystallographic ligand (Figure 5). 

The first one matches the trimethylsilyl moiety of the ligand and requires the displacement of 

Arg100 and Tyr195. Interestingly, the latter residue is only shifted in the used reference 

structure (Figure 5) but is completely displaced in other crystal structures (such as PDB ID 

3sp7), thereby creating a larger void. Encouragingly, both conformations are sampled and 

selected using our approach. The second pocket core is located between helices α3 and α4, 

around Leu108. This binding interface is highly flexible and has been crystallized in different 

conformations (compare PDB IDs 4ehr, 3sp7, and 3zln). The different crystal structures have a 

shift of α3 in common, which increases the accessible volume around Leu108. Additionally, 

Tyr101 and Phe105 are displaced compared to the apo state. The latter transition especially 

involves changes of the secondary structure of Phe105 and adjacent residues (Figure 5). In our 

simulations, we observe the shift of α3, the displacement of Tyr101, and a shift, but not the full 

displacement including changes in the secondary structure, of Phe105. Furthermore, these 

transitions occur independently rather than in a concerted manner during our simulations. 

Only a partial opening of the cryptic site is observed in our simulations for β-Lac and HSP90. 

In both cases, we identified a hydrogen bonding network in the apo structure that remains intact 

during our simulations, but is broken in the open state of the cryptic site in the known holo 

structure. We assume that this hydrogen bonding network locks the structures in the closed 

state. Our simulation conditions were selected to stabilize exposed hydrophobic patches in 

water rather than to disrupt electrostatic interactions. As a consequence, very long or enhanced-

sampling simulations might be more suitable to sample the full exposure of such locked cryptic 

sites.9, 17 Consequently, none of the pocket cores identified in β-Lac matched the expected 

cryptic site. However, another pocket core, ranked second by occupancy, is located in the 

vicinity of Ala232 (Figure 4B), which was not open in the holo structure used herein. The 

existence of this additional cryptic site has been proposed before by Bowman and coworkers.8 

Notably, our simulations are much shorter than the aggregated 81 µs used in that study. In a 

more recent crystal structure (PDB ID 5hw5) a Xenon atom binds at the entrance of the cryptic 

site identified by this pocket core (Figure 4B). The use of Xenon has been described as a method 

for the identification of hydrophobic pockets in crystallography61 and, hence, indicates the 

existence of a flexible hydrophobic pocket. Therefore, despite the fact that the expected cryptic 
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site could not be identified, our pocket cores revealed additional pockets, one of which has been 

experimentally validated. 

The cryptic site of HSP90, which is a subpocket of the existing binding site, was not sampled 

in its completely open configuration, which becomes also evident from the PCA (Figure S7). 

Accordingly, it could not be located by a pocket core. However, our approach identified a 

pocket core, ranked second, matching the existing binding site. As the pocket core identification 

is based on the difference between cosolvent-containing and cosolvent-free simulations and the 

binding site in question is observable in the apo structure, this finding indicates that the binding 

site closes in cosolvent-free simulations. Interestingly, the shape of this pocket core overlaps 

with Phe138, indicating the existence of a cryptic subpocket around this residue. A closer 

inspection of the trajectories revealed three possible rotamer states of Phe138 (Figure S13A). 

When simulated in water alone, the existing pocket closes due to a side chain rotation of Phe138 

(Figure S13A, B). Additionally, the binding site slightly contracts by an inwards movement of 

Phe138 and the following residues. In contrast, the rotamer observed in the crystal structure 

(open and closed) is the dominant species in the simulation with cosolvent (Figure S13D). 

Hence, in this case, the cosolvent stabilizes the existing pocket and prevents it from closing. A 

third rotamer is observed in IPH10, in which Phe138 is rotated away from the binding site, 

which gives access to a new cryptic subpocket between Phe138 and the β-sheet (Figure S13C), 

as indicated by the pocket core. Lastly, the highest ranked pocket core in HSP90 is located 

underneath the loop formed by the C-terminal end of helix α3 and the subsequent residues to 

Phe138, indicating a high flexibility and partial detachment of this loop (Figure S14). This lid 

and its structural dynamics have been described to play an important role in the activation cycle 

of HSP90.62, 63 

In summary, we were able to generate fully or partially open conformations of the cryptic sites 

in all our test systems using a single simulation protocol. We consider the definition of distinct 

cryptic sites and the sampling of explicit binding site conformations important for the 

subsequent exploitation of newly identified pockets. Other methods for cryptic site prediction, 

such as CryptoSite20, do not yield this (Figure S15), but are therefore computationally less 

demanding. In those cases where the cryptic site was formed only partially, the transition into 

the fully open state would require breaking hydrogen bond networks and/or changes in the 

secondary structure, which can require microsecond-long simulations. This is in agreement with 

other studies, where the transition from the folded to the unfolded state of helix α3 in HSP90 

could not be observed in equilibrium MD simulations,17 and the opening of the cryptic site in 

β-Lac was only observable in many microsecond-long simulations.8, 16 
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Automated Selection of Representative Protein Structures and Docking 

After the identification of pocket cores, representative structures of the cryptic pockets were 

automatically selected by our workflow. We validated these structures with respect to their 

ability to bind the crystal structure ligand in the open cryptic site by computational docking. 

For the correctly identified cryptic site, the binding site was defined by residues within a fixed 

distance around the pocket cores, sampled conformations were clustered on these residues, and 

clusters with less than ~0.01% of the sampled conformations were excluded to focus on relevant 

conformations (see section “Methods”). Our approach yielded a single cluster for all test 

systems, except for ALR (two clusters) and p38α (four clusters) (Table 2). For each cluster, the 

cluster representative and structure with the largest pocket (with respect to the number of grid 

points of the pocket grid) were used for docking. Accordingly, at most eight structures (p38α), 

but predominantly only two structures, were selected for docking in a consistent manner. 

The crystallized ligands could be re-docked into ALR and MDM2 with a minimum RMSD of 

0.8 and 1.1 Å, respectively (Table 2), which is considerably better than the commonly accepted 

threshold of 2 Å for re-docking,64 i.e., docking a ligand into its native receptor. The docking 

into ALR works remarkably well, despite the observation that His110, which forms a hydrogen 

bond with the carboxylic acid of the ligand in the crystal structure, flips during the simulations 

due to the absence of a binding partner and, thus, cannot form this interaction in the docked 

pose. In IL-2 and p38α, the crystallographic ligand pose was reproduced with an RMSD of 2.3 

and 2.7 Å, respectively. Such RMSD values are still considered good for cross-docking 

experiments, i.e., docking a ligand into a non-native holo structure.65 Particularly for p38α, the 

cryptic site is highly buried. As a consequence, it is not accessible in the closed state 

(RMSD > 13 Å, Table 2), while in the native structure the ligand pose can be well reproduced 

(best re-docking RMSD = 0.2 Å, Table S1). In that respect, the docking results clearly indicate 

the opening of the cryptic site. For HSP90 and Bcl-xL, the crystallographic ligand pose could 

not be approximated closer than an RMSD of 3.6 Å. This is likely due to the incomplete 

sampling of the open state of the cryptic site as already discussed. However, the re-docking of 

the ligands into their native structure resulted in equally large RMSD values (Table S1). In Bcl-

xL, docking is likely challenged by the large size of the ligand containing 47 heteroatoms and 

12 rotatable bonds. Encouragingly, a visual inspection shows that the docking pose resembles 

the overall binding mode well and, in particular, mimics the binding to the cryptic subpocket 

opened by Phe105 (Figure S16). It is important to stress that without first sampling and 

identifying the cryptic pockets, in none of the six test systems a satisfying docking solution was 
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found, with the best ligand pose having an RMSD of 3.0 Å compared to the crystal structure 

(Table 2). 

In conclusion, docking into only a few representative protein structures, selected in an 

automated way from the identified cryptic pocket core matching the cryptic site, enabled us to 

reproduce the crystallized ligand poses for five out of the six systems for which the cryptic site 

could be identified. This validates that our MD protocol is able to sample conformations 

resembling the open state, starting from the closed state crystal structure. We emphasize that a 

single protocol was used for all test systems, not only to sample and identify pocket cores, but 

also to define the binding site, cluster and select structures, and re-dock the ligands. In contrast 

to previous studies,13, 15-17 no attempts were made to manually select the best cryptic pocket 

conformation from the MD ensemble, which highlights that our workflow for cryptic site 

identification and selection can extract relevant binding site conformations from the 

conformational ensemble. 
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5 Concluding Remarks 

We have developed a new approach to sample and identify cryptic sites on protein structures in 

a manner that does not require prior information on the system, for use in structure-based drug 

design on novel protein targets. We systematically tested different cosolvents in equilibrium 

MD simulations and identified a volume concentration of 10% phenol (IPH10) as the best 

cosolvent composition to foster the opening of cryptic sites, while keeping the unfolding of 

proteins at a low probability. From the simulation data, we identified pockets by a grid-based 

approach and located regions where pockets are more frequently observable in the presence of 

cosolvent than in pure water. We refer to such regions as pocket cores. For the majority of test 

cases, one of the top-ranking pocket cores matched the location of the cryptic site. Hence, these 

pockets could have been identified in a prospective manner. Subsequently, we devised a 

workflow to select only a few (mostly two) representative structures for the pocket cores from 

the MD ensemble, and re-docked the known ligands that bind to the cryptic site. The 

crystallographic ligand poses could be well reproduced for five out of six test systems for which 

a pocket core was correctly identified. 

The number of cryptic sites proposed by our approach is small (at most seven), which we 

consider an appropriate number of pockets for subsequent structure-based design approaches. 

In contrast, other methods have proposed up to 50 cryptic pockets for a single protein.9 Several 

cryptic sites that we detected in addition to the crystallographic known pockets (p38α, β-Lac, 

HSP90, and IL-2) could be rationalized retrospectively based on findings from other studies. 

This demonstrates that our protocol is specific enough to yield only a small number of proposed 

cryptic sites, while being sufficiently sensitive to identify relevant ones nonetheless. 

Our approach is challenged by sampling cryptic sites where the opening process involves time 

scales that are demanding for current unbiased MD simulations. This is true for β-Lac, HSP90, 

and Bcl-xL. However, even for these challenging targets, high-ranking pocket cores were 

identified in two cases that indicated the location of the cryptic sites. Other studies have 

succeeded in sampling such difficult cryptic sites, in part by using enhanced sampling 

techniques.9, 16, 17 The proposed methods, however, require the a priori knowledge about the 

cryptic site location or the use of system-specific parameters. Still, integrating enhanced 

sampling techniques might further improve the sampling of cryptic sites by our method. Finding 

a consistent simulation protocol applicable to a wide range of targets, while keeping the 

specificity high, might be challenging, however. 

In conclusion, our method to sample and identify cryptic sites does not rely on a priori 

knowledge about these sites and uses a target-independent parameterization, which renders it 
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valuable for investigating novel protein targets and for de novo hit identification in small 

molecule ligand discovery. 
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7 Associated Content 

Supplementary figures show the distribution of the Leu300 Φ backbone dihedral of ALR as a 

function of the simulation time for the first simulation with 10% phenol as cosolvent 

(Figure S1), the radial distribution function for C1 atoms of phenol, calculated for the 

simulations with 10% phenol as cosolvent (Figure S2), RMS average correlation (RAC) of the 

combined trajectories for the simulations without cosolvent and with 10% phenol as cosolvent 

(Figure S3), PC analyses of the sampled spaces for simulations in IPH10 (Figures S4-S10), the 

histogram of ߯ଵ dihedral for Phe42 in IL-2 for simulations without and with 10% phenol as 

cosolvent (Figure S11), sampling of the second cryptic site in IL-2 (Figure S12), conformations 

of Phe138 in HSP90 (Figure S13), the dynamics of the lid region of HSP90 in IPH10 (Figure 

S14), the results of an orthogonal approach of cryptic site identification (CryptoSite, Figure 

S15), a comparison of docked and crystallized configurations of the ligand in Bxl-xL (Figure 

S16), the comprehensive docking results for docking into the apo, holo, and the sampled 

conformations (Table S1) and the Python routines referred to in the methods (Listing S1 and 

S2). 
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11 Figure Captions 

Figure 1. Overlay of apo and holo structures of the seven protein systems (Aldose 

Reductase (ALR), Interleukin-2, MDM2, p38α, β-lactamase, HSP90, Bcl-xL) used in this 

study. Proteins are shown in cartoon representation in gray. Residues around the cryptic site 

are highlighted by color (blue: apo structure, orange: holo structure). The ligand binding to the 

cryptic binding site is shown in stick representation. The spectrum of conformational changes 

upon formation of the cryptic site ranges from single or few side chain rearrangements (ALR, 

Interleukin-2) to small shifts of secondary structure elements (MDM2, p38α, β-lactamase) to 

formation of secondary structure elements (HSP90) and large-scale deformation of the binding 

site (Bcl-xL). 

Figure 2. Cosolvent mixture screens identify the average best sampling conditions. 

(A) Barplot quantifying the effect of the used solvent combinations (columns) on the opening 

of cryptic sites for the seven test systems (rows). Colors of the bars represent the solvents (blue: 

water, green: ETA, red: IPA, purple: IPH) and the concentrations (light shade: 5% to dark 

shade: 20%). The height of a bar indicates the fraction of frames of a single trajectory with an 

open cryptic site (accessible cryptic volume (eq. 2) ܸܥܣ ൒ 1). Triangles mark simulations 

where partial unfolding was observed, usually starting by the segregation of α-helices from the 

rest of the protein. The test systems are varyingly susceptible to the opening of their cryptic 

sites. On average over the seven test systems (last row), IPH10 has a significantly stronger 

effect than water and the highest effect of all solvents tested. (B) ACV of cryptic site in Aldose 

Reductase simulated in IPH10 as a function of the simulation time. The sampled cryptic site 

volume is scaled to the volume of the cryptic site in the reference crystal structure. After about 

100 ns, the cryptic site opens and remains open for the rest of the simulation. (C) Snapshot of 

the simulation of Aldose Reductase in IPH10 (t ≈ 426 ns, highlighted in purple) in comparison 

to its crystal structure. Orientation of ALR as in Figure 1. The cryptic site is open and the 

binding site conformation closely resembles the one of the crystal structure. The IPH probe 

molecule matches the position of the nitrofuran moiety of the crystallized ligand. 

Figure 3. Workflow for the identification of cryptic sites. (A) Summary grids (eq. 3) are 

calculated for the simulations with (SIPH10) and without (SWAT) IPH as cosolvent, depicted by a 

purple and blue protein, respectively. Probabilities to find a pocket at each grid point 

(occupancies, eq. 4) are depicted by color, ranging from white (low) to red (high). The 

difference of these grids, ࡴࡼࡵࡰ૚૙ିࢀ࡭ࢃ (eq. 5), indicates regions in which pockets occur more 

frequently in the presence of cosolvent. Pocket cores are calculated from the difference grid as 
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depicted in panel B. Snapshots are selected from the cosolvent simulation if their pockets match 

the identified pocket cores. Lastly, the extracted snapshots are clustered based on the RMSD of 

the binding site residues. (B) Pocket cores are calculated from the difference grids by 

successively removing grid points with increasing occupancy (“depletion”) and identifying 

connected groups of grid points subject to additional constraints, such as size (see section 

“Methods” for details). (C) Results of the workflow applied to ALR. Protein structures are 

represented as in Figure 1, unless otherwise noted. Left panel: Summary grid for cosolvent 

simulations (SIPH10), shown with the closed-state crystal structure of ALR. For clarity, only grid 

points in the vicinity to the ligand in the reference crystal structure (PDB ID 4prr, not displayed) 

are shown. Grid points are shown as spheres. The occupancy of each grid point is indicated by 

color and sphere scale from zero (white/small) to 0.8 (red/large). The occupancy of grid points 

decreases from the core of the pocket to the outside. Middle panel: Pocket core calculated from 

the difference grid. Grid points that are part of the pocket core are shown as spheres with semi-

transparent surface. Right panel: Holo structure of ALR (carbon atoms in orange) with bound 

ligand compared to the cluster representative of the highest occupied cluster (carbon atoms in 

gray). Only residues in the binding site, as defined by distance to the pocket core, are shown in 

stick representation and labeled. 

Figure 4. Pocket cores are identified for selected test systems. (A) Closed-state structure 

of p38α shown as gray ribbon and transparent surface with the N- and C-terminal domains 

oriented to the top and bottom, respectively. The crystallized ATP-competitive inhibitor is 

shown in stick representation and highlighted by a blue arrow. The identified cryptic cores are 

shown as groups of spheres. The average occupancy of each pocket is indicated by color, and 

ranges from zero (white) to 0.35 (red), and the sphere size, which ranges from small to large. 

The cryptic core with the highest occupancy (red) matches the cryptic binding site. The ligand 

binding to the cryptic site is shown in orange as semi-transparent surface. Its position was 

determined by alignment with the open-state crystal structure. Notably, no pocket core was 

identified in the ATP-binding site, due to the reference simulations in water. (B) Crystal 

structure of β-Lac (gray ribbon) with bound Xe atoms (yellow spheres) (PDB ID 5hw5). The 

position of Xenon atom Xe302 marks the entrance of a new cryptic site identified by a pocket 

core. The pocket core is represented by spheres with semi-transparent surface (color scale as in 

panel A). Xe303 binds to the expected cryptic site. The ligand binding to the cryptic site is 

shown as an orange, semi-transparent surface. Other highlighted residues and secondary 

structure elements are discussed in the main text. 
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Figure 5. Correctly identified cryptic pockets. Protein representations as in Figure 1. 

Pocket cores matching the known cryptic sites are indicated by semi-transparent surfaces. The 

average occupancy of the pocket cores is indicated by surface color from zero (white) to 0.5 

(red). Highlighted residues are discussed in the main text. Residue F105 in Bcl-xL is indicated 

by “*” and labeled outside the protein structure for clarity. 
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12 Tables 

Table 1: Results of cryptic site identification. 

Target Observed opening of cryptic site Number of cryptic cores 
identified 

Rank of cryptic 
pocketa 

ALR Yes 2 1 

β-Lac Partially 4 --- 

Bcl-xL Partially 3 (2/3)b 

IL-2 Yes 5 3 

MDM2 Yes 2 1 

p38α Yes 7 1 

HSP90 Partially 4 (2)a 
a Ranked according to the average occupancy of a pocket core. 
b Brackets indicate results that are based on a partial opening of the binding site. 

 

Table 2: Results of docking experiments to validated selected cryptic site conformations. 

Target Number of clusters RMSD - simulationa RMSD - crystal structurea 

ALR 2 0.8 4.5 

Bcl-xLb 1 3.6 4.4 

IL-2 1 2.3 3.0 

MDM2 1 1.1 5.4 

p38α 4 2.7 13.3 

HSP90 1 3.6 4.9 
a Best RMSD of docking pose for docking into structures selected from MD simulations or the crystal structure. 
b Only the third pocket core, located around Leu108, was used for comparability. 
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13 Figures 

Figure 1 
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