000862499 001__ 862499 000862499 005__ 20210130001419.0 000862499 0247_ $$2doi$$a10.1073/pnas.1819664116 000862499 0247_ $$2ISSN$$a0027-8424 000862499 0247_ $$2ISSN$$a1091-6490 000862499 0247_ $$2pmid$$apmid:30894488 000862499 0247_ $$2WOS$$aWOS:000463069900036 000862499 0247_ $$2altmetric$$aaltmetric:57480581 000862499 0247_ $$2Handle$$a2128/24157 000862499 037__ $$aFZJ-2019-02805 000862499 082__ $$a500 000862499 1001_ $$0P:(DE-Juel1)159141$$aČermák, Petr$$b0$$ufzj 000862499 245__ $$aMagnetoelastic hybrid excitations in CeAuAl 3 000862499 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2019 000862499 3367_ $$2DRIVER$$aarticle 000862499 3367_ $$2DataCite$$aOutput Types/Journal article 000862499 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1556261645_17806 000862499 3367_ $$2BibTeX$$aARTICLE 000862499 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000862499 3367_ $$00$$2EndNote$$aJournal Article 000862499 520__ $$aNearly a century of research has established the Born–Oppenheimer approximation as a cornerstone of condensed-matter systems, stating that the motion of the atomic nuclei and electrons may be treated separately. Interactions beyond the Born–Oppenheimer approximation are at the heart of magneto-elastic functionalities and instabilities. We report comprehensive neutron spectroscopy and ab initio phonon calculations of the coupling between phonons, CEF-split localized 4f electron states, and conduction electrons in the paramagnetic regime of CeAuAl3, an archetypal Kondo lattice compound. We identify two distinct magneto-elastic hybrid excitations that form even though all coupling constants are small. First, we find a CEF–phonon bound state reminiscent of the vibronic bound state (VBS) observed in other materials. However, in contrast to an abundance of optical phonons, so far believed to be essential for a VBS, the VBS in CeAuAl3 arises from a comparatively low density of states of acoustic phonons. Second, we find a pronounced anticrossing of the CEF excitations with acoustic phonons at zero magnetic field not observed before. Remarkably, both magneto-elastic excitations are well developed despite considerable damping of the CEFs that arises dominantly by the conduction electrons. Taking together the weak coupling with the simultaneous existence of a distinct VBS and anticrossing in the same material in the presence of damping suggests strongly that similarly well-developed magneto-elastic hybrid excitations must be abundant in a wide range of materials. In turn, our study of the excitation spectra of CeAuAl3 identifies a tractable point of reference in the search for magneto-elastic functionalities and instabilities. 000862499 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0 000862499 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1 000862499 588__ $$aDataset connected to CrossRef 000862499 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0 000862499 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0 000862499 693__ $$0EXP:(DE-MLZ)PANDA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PANDA-20140101$$6EXP:(DE-MLZ)SR2-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePANDA: Cold three axes spectrometer$$fSR2$$x0 000862499 693__ $$0EXP:(DE-MLZ)PUMA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PUMA-20140101$$6EXP:(DE-MLZ)SR7-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePUMA: Thermal three axes spectrometer$$fSR7$$x1 000862499 7001_ $$0P:(DE-Juel1)156579$$aSchneidewind, Astrid$$b1 000862499 7001_ $$0P:(DE-Juel1)171229$$aLiu, Benqiong$$b2 000862499 7001_ $$0P:(DE-HGF)0$$aKoza, Michael Marek$$b3 000862499 7001_ $$0P:(DE-HGF)0$$aFranz, Christian$$b4 000862499 7001_ $$0P:(DE-HGF)0$$aSchönmann, Rudolf$$b5 000862499 7001_ $$0P:(DE-HGF)0$$aSobolev, Oleg$$b6 000862499 7001_ $$0P:(DE-HGF)0$$aPfleiderer, Christian$$b7$$eCorresponding author 000862499 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.1819664116$$gVol. 116, no. 14, p. 6695 - 6700$$n14$$p6695 - 6700$$tProceedings of the National Academy of Sciences of the United States of America$$v116$$x1091-6490$$y2019 000862499 8564_ $$uhttps://juser.fz-juelich.de/record/862499/files/2019-PNAS-1819664116.SI.pdf$$yOpenAccess 000862499 8564_ $$uhttps://juser.fz-juelich.de/record/862499/files/2019-PNAS-1819664116.full.pdf$$yOpenAccess 000862499 8564_ $$uhttps://juser.fz-juelich.de/record/862499/files/2019-PNAS-1819664116.full.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000862499 909CO $$ooai:juser.fz-juelich.de:862499$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire 000862499 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159141$$aForschungszentrum Jülich$$b0$$kFZJ 000862499 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156579$$aForschungszentrum Jülich$$b1$$kFZJ 000862499 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0 000862499 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1 000862499 9141_ $$y2019 000862499 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000862499 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000862499 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000862499 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000862499 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2017 000862499 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 000862499 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bP NATL ACAD SCI USA : 2017 000862499 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000862499 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000862499 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000862499 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000862499 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000862499 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000862499 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000862499 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000862499 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000862499 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000862499 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central 000862499 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000862499 920__ $$lyes 000862499 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0 000862499 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1 000862499 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2 000862499 980__ $$ajournal 000862499 980__ $$aVDB 000862499 980__ $$aUNRESTRICTED 000862499 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000862499 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000862499 980__ $$aI:(DE-588b)4597118-3 000862499 9801_ $$aFullTexts