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Supporting Information Text13

Experimental details14

The neutron scattering measurements were carried out on the triple-axis spectrometers PUMA and PANDA at MLZ (1, 2). The15

experimental setups involved double-focussing PG002 monochromators and analyzers and a closed-cycle cryostat for sample16

cooling. In the measurements at PUMA, data were recorded in the (h, 0, l) and (h, k, 0) plane using constant kf = 2.662 Å−1
17

and two PG-filters after the sample. To determine the resolution, selected scans were recorded at the PG004 reflection of the18

analyzer. At PANDA, high-resolution measurements were carried out in (h, 0, l) orientation of the sample using kf = 1.57 Å−1
19

with cooled Be-filter. Further data were recorded using kf = 1.97 Å−1 with a PG-filter after the sample. The positions in20

q-space where spectra were collected are shown in Fig. S1.21
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Fig. S1. Location of all data points measured on PUMA in the (h, 0, l) sample orientation (panel (a)), and the (h, k, 0) sample orientation (panel (b)). (c) Projection of the
location of all data points measured at PANDA.

Crystal field analysis22

The pure crystal field levels without taking into account perturbations were analyzed using the standard Stevens formalism (3).23

The position of the Ce atoms in CeAuAl3 is characterized by the point group symmetry C4v (4mm in int. notation). This24

allows to reduce the general crystal field Hamiltonian to:25

H0
CEF = B0

2O
0
2 +B0

4O
0
4 +B4

4O
4
4, [1]26

where Bmn and Omn are the CEF parameters and Steven’s operators, respectively (3, 4). In the paramagnetic phase the sixfold27

degenerate Ce3+ state (J = 5
2 ), which corresponds to a 4f1 configuration, is split into three doublets:28

|Γ6〉 = | ± 1
2 〉

|Γ(1)
7 〉 = α| ± 5

2 〉 − β| ∓
3
2 〉

|Γ(2)
7 〉 = β| ± 5

2 〉+ α| ∓ 3
2 〉

[2]29

Neutron scattering of the crystal field transitions between these states on a single crystal sample bears the advantage,30

that different ground states may be distinguished directly from a comparison of the different crystallographic directions. The31

intensity of the transition between two CF levels depends on the matrix elements of the transition matrix32

S(Q, E)En→Em = c ·
(
f(Q)

)2
Pn
∑
α

|〈Γm|Jα|Γn〉|2δ(E − En − Em), [3]33
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where f(Q) is the magnetic form factor, Pn expresses thermal occupation of level En, α = x, y or z, and J is the total angular34

momentum operator. Since neutrons are sensitive to the magnetic moment perpendicular to Q only, it is possible to observe35

the different Jα matrices.36

Because of the simple form of the Jz matrix, it does not contribute to transitions from/to the |Γ6〉 state. Consequently, for37

the case of the |Γ6〉 ground state, the Jx and Jy components may be measured together along the crystallographic c direction38

whereas only Jx, Jy is measured along the b, a direction, respectively. In addition, transition intensities along the a- and b-39

axis are the same in the tetragonal structure. On the other hand, for the |Γ(1)
7 〉 or |Γ

(2)
7 〉 ground states the Jz component will40

always contribute to the transition from and to the ground state.41

CF1

phonons CF2In
t. 

(c
ts

/m
on

)

E (meV) E (meV)

a) b)

c)

Fig. S2. (a) Energy scans in two different crystallographic directions. The monitoring rate of the data was corrected for higher order contamination. Arrows indicate the
observed crystal field levels as well as contamination by phonons. Data marked by white symbols were not taken into account in the analysis as the contamination due to
phonons was difficult to fit. (b) and (c) Close-up view of the data. The lines represent Gaussians.

Energy scans were recorded at Q = (0, 0, 4) and Q = (1, 1, 0) between 2 and 28 meV on the spectrometer PUMA. An42

analytic correction of the monitor for higher order scattering was applied to the raw data. Both spectra are shown in Fig.43

S2(a). The intensities of the peaks inferred from fits of the data are summarized in table S1. As stated above, for the case of44

the |Γ6〉 ground state we find I(004) ≈ 2 · I(110), otherwise I(004) < 2 · I(110). Thus, the ground state is in excellent agreement45

with |Γ6〉, consistent with Ref. (5).46

For the detailed determination of the crystal field parameters, Monte-Carlo calculations were used to visualize the possible47

solutions in a depiction of B0
2 , B0

4 and B4
4 shown in Fig. S3. This analysis underscores, that for given ratio of the CF excitation48

to the ground state, there exist only two independent solutions (and another two with opposite sign of B4
4 parameter which49

is indistinguishable using neutron scattering). Two of these four solutions are in agreement with the |Γ6〉 ground state. A50

Generalized Reduced Gradient (GRG2) (6) nonlinear optimization algorithm was used to refine the detailed B parameters,51

resulting in B0
2 = 1.203, B0

4 = −0.00095 and B4
4 = ±0.244 meV. The parameters accounting for the crystal field splitting52

calculated from this set of B values are denoted in Table S1.53
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Fig. S3. Visualization of the possible crystal field parameters resulting in an energy splitting of ∆1 = 4.885meV ± 5% and ∆2 = 24.16meV ± 5%. Different rings
represent a different order of CEF states. The color coding serves to highlight the ratio between the intensities of two crystal field peaks.
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Table S1. Intensities of the CF transitions

measured calculated
Q ICF1 ICF2 ICF1/ICF2 E1 E2 ICF1/ICF2 E1 E2

(0, 0, 4) 3220(50) 420(80)
4.885(7) 24.16(9) 6.6 4.949 24.26(1, 1, 0) 1140(30) 250(70)

averaged Jx 1450(30) 220(50) 6.6(1.7)

Becker-Fulde-Keller theory54

Pure CEF excitations are expected to have negligible lifetime. In turn, the width of the CEF peaks is expected to be limited55

by the resolution of the spectrometer and temperature independent. As shown in Fig. S4(a) this is not the case for CeAuAl3.56

Data shown here were simultaneously fitted at seven different temperatures using the same constant background and same57

width of the peaks. An alternative analysis is reported in the main text, where the same data were fitted with an independent58

sloping background and an independent width of the peaks (cf. Fig. 3(a) in the manuscript). While the quality of the fits59

is very good, the temperature dependence of the intensities inferred from the fits does not follow the expected behaviour as60

shown in Fig. 3(b) in the main text.61

The reason is that part of the magnetic intensity transfers into the background with increasing temperature. This effect is62

well described by a theoretical model proposed by by Becker, Fulde and Keller (BFK) (7). In order to compare the experimental63

data with the predictions of BFK theory, the original code written by Keller was used, available as an open source of the64

McPhase suite (8). Unfortunately, the original code in FORTRAN is very slow and not suitable for fitting. The code was65

therefore enhanced and recompiled with a PYTHON interface and published as a part of CrysFiPy software (9). The results of66

the fit are shown in Fig. S4(b), where all seven energy scans were fitted simultaneously with the BFK model (using a single67

FWHM and a flat background) and a coupling constant gBFK = 0.022 was obtained. Note, that the BFK model corresponds68

to second order perturbation theory with respect to coupling constant gBFK. Therefore, the BFK model is inaccurate at the69

lowest temperatures, since it does not account for the broadening of |Γ6〉 into a heavy band by the Kondo lattice effect. Yet,70

these effects are negligible and do not change our analysis.71

Fig. S4. Energy scans at Q = (0, 0, 3) at different temperatures (see als legend for details). a) Data were fitted with a Gaussian of the same width and fixed intensity ratios
regarding population of pure CF excitation from the ground state. b) Data were fitted with Becker-Fulde-Keller theory. Resulting fit parameters are stated in the figure.

Analysis of the anti-crossing72

In order to account for the anti-crossing and to evaluate the coupling energy, the results of Aksenov and coworkers for PrAl273

(10) and later PrNi5 (11) were adapted. A detailed procedure may be found in Ref. (12), which addresses coupled excitations74

in paramagnetic regime. In the following the main steps of the calculations are summarized. A double-time Green function75

method was used to describe the coupling of the lattice to magnetic ions for cubic symmetry and zero field. While in PrNi576

the anti-crossing due to the dipole transition Γ4 − Γ5 is observed by neutron scattering, in case of PrAl2 the quadrupolar77

transition Γ3 − Γ4 would not be neutron active without coupling to the lattice.78

For CeAuAl3, the calculation needs to be extended to tetragonal symmetry. To do so the f -electrons are treated as strictly79

localized, because the first CEF excitation at E=59.2K (13) lies well above TK (14). For a standard Hamiltonian of RE80

metallic compounds, taking the magneto-elastic interaction into account, the one-phonon Green-function (GF) in the random81

phase approximation may be expressed as (10, 11)82

D(q, ω) =
[(
D0(q, ω)

)−1
−
∑
mn

Gmn(q, ω)
]−1

, [4]83

where D0(q, ω) is the phonon GF in the harmonic approximation, q is wave vector of phonons, and84

Gmn(q, ω) = EmnV
1
mnV

1
nm(fm − fn)2

ω2 − E2
mn

, [5]85
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where fm = exp (−βEm)/
∑

m
exp (−βEm) is the occupation number of one-ion states, and Emn are energies of transitions86

between CEF levels. V 1
mn = 〈m|V1(J , q)|n〉 are matrix elements of the operators V1(J , q) which are functions of the J operators87

depending on the symmetry of the magneto-elastic coupling (15).88

The total Hamiltonian of the system may be written as89

Hf
CEF = H0

CEF +HI
me, [6]90

Hf
CEF denotes the interaction of the spin J of the f -th ion with the crystal field caused by the other ions, with the zeroth-order91

term H0
CEF being the conventional crystal field Hamiltoninan described by Eq. (1) and also solved there. HI

me is the one-ion92

magneto-elastic interaction, coupling the spin system to the strain. At low temperature, only the lowest-lying level is occupied.93

In the following the low-energy transition |Γ6〉 → |Γ1
7〉 at EΓ6Γ1

7
= 4.9meV is considered, which crosses the acoustic phonon.94

The one-ion magneto-elastic Hamiltonian accounts for the direct coupling between the deformations of the lattice and the95

4f shell. This Hamiltonian may be constructed according to group theory (16). Let SΓ,j
i (i = 1, 2, · · · , n) be the spin functions96

which form a basis for the n-dimensional representation Γ, different sets being distinguished by j =1, 2. Then the one-ion97

contributions HI
me to the magneto-elastic Hamiltonian may be written as98

HI
me = −

∑
Γ

∑
j,j′

B̃Γ
jj′(f)

∑
i

εΓ,ji S
Γ,j′
i (f), [7]99

where B̃Γ
jj′ is a phenomenological magneto-elastic coupling constant, and εΓ,ji represents linear combinations of the first-order100

strain components εxx, εyy, εzz, εxy, εyz, and εzx. The shear strains are defined as εxy = 1
2 ( ∂uy

∂x
+ ∂ux

∂y
).101

It is reasonable to assume that the crystal is constrained so that all "antisymmetric strains" such as 1
2 ( ∂uy

∂x
− ∂ux

∂y
), which102

correspond to homogeneous rotations of the crystal, vanish. Whereas in zero applied magnetic field the rotational magneto-elastic103

interaction may be expected to contribute to the phonon dispersion curves for finite q-values (17), the coupling is expected to104

give corrections of a few percent only. Therefore, these terms will not be considered in this work. SΓ,j′(f) corresponds to the105

spin operators of the ion at site f , as shown in Table S2. As Eq. (7) has been derived assuming homogeneous strains, it is only106

valid for long-wavelength acoustic phonons (18).107

Table S2. Strain functions and one-ion spin operators for the tetragonal system.

Strain functions εΓ,ji One-ion operators SΓ,j′ (f)
εα1 ≡

√
3

3 (εxx + εyy + εzz) 1
εα2 =

√
2
3 [εzz − 1

2 (εxx + εyy)] 3J2
z − J(J + 1)

εγ =
√

2
2 [εxx − εyy ] J2

x − J2
y = 1

2 (J2
+ + J2

−)
εδ =

√
2εxy Pxy = 1

2 (JxJy + JyJx)
εε1 =

√
2εyz Pyz = 1

2 (JyJz + JzJy)
εε2 =

√
2εzx Pzx = 1

2 (JxJz + JzJx)

Thus the one-ion magneto-elastic Hamiltonian for the tetragonal symmetry (point group 4mm) may be expressed directly108

as (19)109

HI
me(f) = − B̃α1εα1

[
3J2
z − J(J + 1)

]
110

− B̃α2εα2
[
3J2
z − J(J + 1)

]
111

− B̃γ
√

2
2 (εxx − εyy)(J2

x − J2
y )112

− B̃δ
√

2
2 εxy(JxJy + JyJx)113

− B̃ε
√

2
2 εyz(JyJz + JzJy)114

− B̃ε
√

2
2 εxz(JxJz + JzJx), [8]115

In other words, the magneto-elastic Hamiltonian may be considered as the strain derivative of the crystal field Hamiltonian.116

The two-ion magneto-elasticity is in turn related to the modification of the two-ion magnetic interactions by the strain. The117

last three terms describe a quadrupolar interaction. However, it is important to emphasize that we do not consider the presence118

of multipolar order nor the coupling of the excitations of multipolar order to the phonons.119

The one-ion magneto-elastic Hamiltonian is sufficiently general when considering the main effects. Therefore, in this study120

two-ion magneto-elastic interactions were ignored which may lead to structural and magnetic phase transitions (15). In addition,121

the experimental data (even under an applied magnetic field) was analysed in terms of V1(J , q), i.e., neglecting the second122

order magneto-elastic interaction as well as the linear rotational interaction.123
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We specialize our example of magneto-elastic interaction of shear deformations within the x− z plane (all ∂uα
∂β

= 0 except124

∂ux
∂z

and ∂uz
∂x

). Then we have125

V1(J , q) ∼ ez(qx)qx(JxJz + JzJx), [9]126

where e(q) is the polarization vector for the phonon.127

For the Γ−M direction, only the matrix elements determined by ΓA6 − Γ1B
7 and ΓB6 − Γ1A

7 differ from zero. Using the wave128

functions of one-ion states, the matrix elements for Eq. (5) may be obtained in the form129

|V 1
ΓA6 Γ1B

7
| = |V 1

ΓB6 Γ1A
7
| = 2

√
2αB̃ε|q|, [10]130

where B̃ε is the magneto-elastic coupling constant and |q| is reciprocal wavevector. In order to compare the coupling in different131

materials, we introduce an effective coupling constant gAC, which is directly related to the renormalization of elastic constant132

(see Eq. 37 in Ref. (18) with gAC = g̃2):133

gAC = (B̃ε)2

c44Ω = (B̃ε)2

v2
smc

= ~2(B̃ε)2q2

ω2
0mc

, [11]134

where c44 is an elastic constant, Ω is the volume of the primitive cell, vs is the speed of sound and mc is the mass of the135

primitive cell. Using Eqs. (4) and (5), the coupled quadrupole-phonon dispersion ω(q) may be determined by the poles of the136

Green-Function (4), i.e., by setting the denominator of Eq. (5) equal to zero (15):137

(ω2
q)2 − ω2

qE
2
Γ6Γ1

7
− ω2

0ω
2
q + ω2

0E
2
Γ6Γ1

7
− ~2

mc
EΓ6Γ1

7
(|VΓA6 Γ1B

7
|2 + |VΓB6 Γ1A

7
|2) = 0. [12]138

Fig. S5. (a-h) Energy scans recorded at the PUMA spectrometer at positions (20l). Data are fitted with two Gaussians and the same sloping background. (i) Dispersion
relations inferred from the maximum of the fits.

One may finally obtain the mixed mode dispersion as:139

ω2
q± =

E2
Γ6Γ1

7
+ ω2

0

2 ∓
[(E2

Γ6Γ1
7
− ω2

0

2

)2
+ 16α2EΓ6Γ1

7
ω2

0gAC

] 1
2
, [13]140

With equation (13), the magneto-elastic constant may be inferred from the experimental data. For the modelling of the acoustic141

phonon dispersion, the simplest possible model was used corresponding to a 1D chain:142

ωq = A
√

1− cos(|q|) [14]143

where A is related to the amplitude of the branch at the border of the Brillouin zone. At first data points were determined by144

Gaussian fits of the raw data, Fig. S5(a-h). This approach ignores intensities of the excitations and results in the set of data145

points shown in Fig. S5(i). The data were subsequently fitted with the model described by Eq. (13) and (14). The results of the146

fit are shown in Fig. S6 with all points measured also in different Brillouin zones (see Fig. 2 in the manuscript for color coding).147

The results of the fit may be summarized as follows: A = 5.439(6) meV, EΓ6Γ1
7
= 4.952(3) meV and gAC =12.1(2)µeV.148

In order to compare our effective coupling constant with the results of Aksenov on PrNi5 (11), we refitted their data. In149

particular, it appears that the dependence of the matrix elements Vmn on the wavevector q and a factor of 1/2 were not taken150
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into account. The expression we used instead to account for the coupled CEF-phonon excitation mediated by quadrupolar151

interactions in PrNi5 may be expressed as:152

ω2
q± =

E2
Γ4Γ5A + ω2

0

2 ∓
[(E2

Γ4Γ5A − ω
2
0

2

)2
+ 9.822

2 EΓ4Γ5Aω
2
0gAC

] 1
2
, [15]153

Refitting the data reported n PrNi5 we obtain as an upper bound gAC < 4µeV, which is much smaller than for CeAuAl3 . An154

exact determination of the coupling constant is unfortunately due to resolution of the data as illustrated in Fig. S6 (b).155

Fig. S6. (a) Anti-crossing of the TA phonon branch and the crystal field excitation in CeAuAl3. The solid lines are the result of the fit of the Eq. (13) to the measured data. (b)
Anti-crossing in PrNi5. Solid lines are result of the fit of the Eq. (15) to the data measured by Aksenov (11). Due to the lack of resolution, two nearest points to the crossing point
were excluded from the fitting procedure, as there is not possible to distiguish peak splitting. The shaded area denotes possible solutions with a respect to the fitted error. Black
underlying data in the background were taken from Ref. (11). On the basis of this fit we estimate the effective anti-crossing coupling constant in PrNi5 to be smaller than 4µeV.

Vibronic bound state156

The total Hamiltonian may be written as157

Htotal = HCEF + ~ω0(a+
u au + 1/2)− g(au + a+

u )Ou, [16]158

where the first term is the tetragonal CEF Hamiltonian mentioned above, the second term is the phonon Hamiltonian (Hph),159

and the third term is the c-ph coupling term. Here ~ω0 denotes the phonon energy, and a+
u or au are phonon creation or160

annihilation operators, u is the phonon displacement, and g is a magneto-elastic parameter proportional to the coupling161

between CEF and phonon excitations. Ou is the CEF-phonon operator, with u = α, γ, δ, ε1 and ε2. According to ref.(13), the162

CEF-phonon operator should be of the form163

Oγ = O2
2 = J2

x − J2
y = 1

2(J2
+ + J2

−). [17]164

In the basis states of the CEF states, Oγ is given by165

Oγ =


0 0 O13

γ 0 0 O16
γ

0 0 0 O13
γ O16

γ 0
O13
γ 0 0 0 0 0
0 O13

γ 0 0 0 0
0 O16

γ 0 0 0 0
O16
γ 0 0 0 0 0

 , [18]166

with167

O13
γ ≡ 〈1|Oγ |3〉 = −3

√
2α+

√
10β, [19]168

169

O16
γ ≡ 〈1|Oγ |6〉 =

√
10α+ 3

√
2β. [20]170

Then the oscillator strengths Qγ is given by171

Qγ =

( 0 15.0928 40.9046
15.0928 0 0
40.9046 0 0

)
[21]172

with Qαβ =
∑

nm
|〈Γmα |Oγ |Γnβ〉|2. We have QΓ6Γ2

7
γ = Q

Γ2
7Γ6
γ = 40.9046 and QΓ6Γ1

7
γ = Q

Γ1
7Γ6
γ = 15.0928. This shows that the173

phonon coupling is possible only to the inelastic Γ6 ↔ Γ1
7 and Γ6 ↔ Γ2

7 transitions.174

The eigenstates of Htotal are calculated within the eight-dimensional subspace |ψk〉, k = 1, 2, · · · , 8 of zero- and one-phonon175

states |Γ6, 0〉, |Γ1
7, 0〉, |Γ2

7, 0〉 and |Γ6, 1〉 = a+|Γ6, 0〉 with unperturbed energies 0, EΓ6Γ1
7
, EΓ6Γ2

7
, and ~ω0, respectively. The176
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diagonalization of the Hamiltonian Htotal yields phonon-like states, which represent linear combinations of purely electronic177

|Γ2
7, 0〉 states and one-phonon states |Γ6, 1〉:178

|Γ̃2
7〉 = e|Γ6, 1〉+

√
1− e2|Γ2

7〉, [22]179

This may be interpreted as bound states of a CEF excitation with phonons.180

For a rough estimate of the coupling constant gVBS we have assumed ~ω0 = 6.5 meV, just between ECF and EVBS. This value181

is in agreement with an enhanced density of phonon states as determined in DFT calculations (see Fig. 2 in the manuscript).182

In the next step, the CEF Hamiltonian leading to unperturbed CEF transitions at ECF1 ≈ ~ω0 and ECF2 = 24.2meV was183

guessed. In turn, the coupling constant was fitted to the measured energy transitions at ECF1, EVBS and ECF2 resulting in184

gVBS ≈ 400µeV. This approximation is based on a simple model assuming non-dispersive phonon states. For the correct185

treatment of the vibronic coupling in CeCuAl3 one needs to involve a more complex theoretical apparatus.186

We will now discuss the relation between coupling constants of the VBS and the anti-crossing, gVBS and gAC, respectively.187

The constants appear to differ by an order of magnitude. However, their values are not directly related for the following reasons:188

(a) For gVBS, we adopted Adroja’s treatment (13) and in the Hamiltonian we used also the operator O2
2 = J2

x − J2
y for the189

magneto-elastic term. But for gAC, we used another operator, namely JxJz + JzJx, accounting for shear deformations.190

The former operator does not lead to the appearance of mixed modes for transverse phonons with q · e = 0. Further,191

different operator will lead to different matrix elements, such that the pre-factors of gAC and gVBS can be compared.192

(b) For the vibronic bound state a simplified model was used, where the phonon is dispersionless and the phonon energy is193

constant. For the anti-crossing the phonons are q-dependent. These two methods are different. The former is directly194

diagonalizing the total Hamiltonian, while the latter requires use of a phonon Green-function. This should produce only195

a small difference in g-values.196

(c) The final value of gAC obtained by fitting the INS data represents an effective coupling constant. It is obtained from the197

phenomenological magneto-elastic coupling constant B̃Γ
jj′ and material constants of the sample using Eq. (11). On the198

other hand, gVBS directly indicates the strength of the mixing between CEF levels and phonons. It does not scale with199

the magneto-elastic coupling constants.200
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Additional figures and resources201

In the following additional figures are presented to illustrate further the phenomena described in the main text. Fig. S7 shows202

the momentum dependence of the crystal field and vibronic excitations, which decreases with increasing momentum following203

closely the form factor of the Ce3+ ion (solid line).204

Crystal field

Vibronic 
bound state

I 
(a

rb
. 

u.
)

Fig. S7. Q-dependence of the integrated intensities of the crystal field and vibronic bound state along the (h, 0, 0) direction. The black line denotes a fit to the form factor of
the Ce3+ ion. The data at the last point, (2, 0, 0), were measured for a different sample orientation and with lower statistics, accounting for the larger error bars.

The anti-crossing described in the main text was observed for different positions in Q-space. The effect was not always205

evident due to the tilt of resolution elipsoid. In order to illustrate this, data across the anti-crossing are shown for three206

different Brillouin zones in Fig. S8. Fig. S8(a) was also shown in the main text. It displays the anti-crossing nearby a weak207

reflection (101), notice enhanced intensity of the CF mode between anti-crossing and middle of the Brillouin zone 101. This208

effect may be caused by an underlying softened optical phonon and agrees with the single oscillator model for the VBS since the209

|Γ6〉 -> |Γ1
7〉 transition and the phonon frequency around Gamma become progressively detuned suppressing the VBS intensity.210

Polarized neutron scattering experiments will be needed to resolve this issue. Further, Fig. S8(b) shows the anti-crossing211

nearby the strong elastic reflection at (202). Here the CEF intensity is constant on both sides of the anti-crossing and the212

phonon branch across the anti-crossing is enhanced. The anti-crossing effect is, finally, barely visible nearby the (114) Γ-point213

due to the instrumental resolution as shown in Fig. S8(c).214
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Fig. S8. Intensity maps measured on PUMA instrument in the a) 10L, b) 20L and c) 11L region.

Detailed energy scans through different Q-points of the anti-crossing in the (101) Brillouin zone is shown in Fig. S9(a) and215

its temperature dependence is in Fig. S9(b). The enhanced intensity in the middle of the Brillouin zone (Γ-point, red area) as216

compared to the M-point (green area) was already discussed in the main text. This effect is not visible for the (202) Γ-point, cf.217

Fig. S9(c).218
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Fig. S9. Constant Q scans normalized to the standard monitor. Black lines are results of the fit of Gaussians. (a) Comparison of the width and intensities of the anti-crossing in
the (101) Brillouin zone. Note the unusual enhancement of the CF intensity which decreases with lower Q (from red to green). Data are shifted vertically by 200 cts for clarity.
(b) Temperature dependence of the anti-crossing between phonon and crystal field at the (1 0 0.5) point. See that the whole intensity scales down as expected from the crystal
field level. Lines are Gaussian fits to the data. (c) Comparison of the width and intensities of the anti-crossing in the (202) Brillouin zone.
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