000862505 001__ 862505
000862505 005__ 20220930130210.0
000862505 0247_ $$2doi$$a10.1109/TMI.2019.2910386
000862505 0247_ $$2ISSN$$a0278-0062
000862505 0247_ $$2ISSN$$a1558-0062
000862505 0247_ $$2ISSN$$a1558-254X
000862505 0247_ $$2pmid$$apmid:30990178
000862505 0247_ $$2WOS$$aWOS:000494433300017
000862505 0247_ $$2altmetric$$aaltmetric:70077225
000862505 037__ $$aFZJ-2019-02809
000862505 082__ $$a620
000862505 1001_ $$0P:(DE-Juel1)162442$$aZimmermann, Markus$$b0
000862505 245__ $$aMulti-exponential Relaxometry using l1-regularized Iterative NNLS (MERLIN) with Application to Myelin Water Fraction Imaging
000862505 260__ $$aNew York, NY$$bIEEE$$c2019
000862505 3367_ $$2DRIVER$$aarticle
000862505 3367_ $$2DataCite$$aOutput Types/Journal article
000862505 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573198351_27863
000862505 3367_ $$2BibTeX$$aARTICLE
000862505 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862505 3367_ $$00$$2EndNote$$aJournal Article
000862505 520__ $$aA new parameter estimation algorithm, MERLIN, is presented for accurate and robust multi-exponential relaxometry using magnetic resonance imaging, a tool that can provide valuable insight into the tissue microstructure of the brain. Multi-exponential relaxometry is used to analyze the myelin water fraction and can help to detect related diseases. However, the underlying problem is ill-conditioned, and as such, is extremely sensitive to noise and measurement imperfections, which can lead to less precise and more biased parameter estimates. MERLIN is a fully automated, multi-voxel approach that incorporates state-of-the-art $\ell _{1}$ -regularization to enforce sparsity and spatial consistency of the estimated distributions. The proposed method is validated in simulations and in vivo experiments, using a multi-echo gradient-echo (MEGE) sequence at 3 T. MERLIN is compared to the conventional single-voxel $\ell _{2}$ -regularized NNLS (rNNLS) and a multi-voxel extension with spatial priors (rNNLS + SP), where it consistently showed lower root mean squared errors of up to 70 percent for all parameters of interest in these simulations.
000862505 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000862505 588__ $$aDataset connected to CrossRef
000862505 7001_ $$0P:(DE-Juel1)131782$$aOros-Peusquens, Ana-Maria$$b1
000862505 7001_ $$0P:(DE-Juel1)166343$$aIordanishvili, Elene$$b2
000862505 7001_ $$0P:(DE-Juel1)176499$$aShin, Seonyeong$$b3
000862505 7001_ $$0P:(DE-HGF)0$$aYun, Seong Dae$$b4
000862505 7001_ $$0P:(DE-Juel1)140186$$aAbbas, Zaheer$$b5
000862505 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b6$$eCorresponding author
000862505 773__ $$0PERI:(DE-600)2068206-2$$a10.1109/TMI.2019.2910386$$gp. 1 - 1$$n11$$p 2676 - 2686$$tIEEE transactions on medical imaging$$v38$$x1558-254X$$y2019
000862505 8564_ $$uhttps://juser.fz-juelich.de/record/862505/files/08688423-1.pdf$$yRestricted
000862505 8564_ $$uhttps://juser.fz-juelich.de/record/862505/files/08688423.pdf$$yRestricted
000862505 8564_ $$uhttps://juser.fz-juelich.de/record/862505/files/20190426091311948.pdf
000862505 8564_ $$uhttps://juser.fz-juelich.de/record/862505/files/08688423-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862505 8564_ $$uhttps://juser.fz-juelich.de/record/862505/files/08688423.pdf?subformat=pdfa$$xpdfa$$yRestricted
000862505 8564_ $$uhttps://juser.fz-juelich.de/record/862505/files/20190426091311948.pdf?subformat=pdfa$$xpdfa
000862505 8767_ $$81-13453985748$$92019-04-24$$d2019-04-26$$ePage charges$$jZahlung erfolgt$$z750$
000862505 909CO $$ooai:juser.fz-juelich.de:862505$$pOpenAPC$$pVDB$$popenCost
000862505 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162442$$aForschungszentrum Jülich$$b0$$kFZJ
000862505 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131782$$aForschungszentrum Jülich$$b1$$kFZJ
000862505 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166343$$aForschungszentrum Jülich$$b2$$kFZJ
000862505 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176499$$aForschungszentrum Jülich$$b3$$kFZJ
000862505 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140186$$aForschungszentrum Jülich$$b5$$kFZJ
000862505 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b6$$kFZJ
000862505 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000862505 9141_ $$y2019
000862505 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862505 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T MED IMAGING : 2017
000862505 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862505 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862505 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862505 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862505 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862505 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862505 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862505 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000862505 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000862505 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T MED IMAGING : 2017
000862505 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000862505 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000862505 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000862505 980__ $$ajournal
000862505 980__ $$aVDB
000862505 980__ $$aI:(DE-Juel1)INM-4-20090406
000862505 980__ $$aI:(DE-Juel1)INM-11-20170113
000862505 980__ $$aI:(DE-82)080010_20140620
000862505 980__ $$aAPC
000862505 980__ $$aUNRESTRICTED
000862505 9801_ $$aAPC