001     862505
005     20220930130210.0
024 7 _ |a 10.1109/TMI.2019.2910386
|2 doi
024 7 _ |a 0278-0062
|2 ISSN
024 7 _ |a 1558-0062
|2 ISSN
024 7 _ |a 1558-254X
|2 ISSN
024 7 _ |a pmid:30990178
|2 pmid
024 7 _ |a WOS:000494433300017
|2 WOS
024 7 _ |a altmetric:70077225
|2 altmetric
037 _ _ |a FZJ-2019-02809
082 _ _ |a 620
100 1 _ |a Zimmermann, Markus
|0 P:(DE-Juel1)162442
|b 0
245 _ _ |a Multi-exponential Relaxometry using l1-regularized Iterative NNLS (MERLIN) with Application to Myelin Water Fraction Imaging
260 _ _ |a New York, NY
|c 2019
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1573198351_27863
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A new parameter estimation algorithm, MERLIN, is presented for accurate and robust multi-exponential relaxometry using magnetic resonance imaging, a tool that can provide valuable insight into the tissue microstructure of the brain. Multi-exponential relaxometry is used to analyze the myelin water fraction and can help to detect related diseases. However, the underlying problem is ill-conditioned, and as such, is extremely sensitive to noise and measurement imperfections, which can lead to less precise and more biased parameter estimates. MERLIN is a fully automated, multi-voxel approach that incorporates state-of-the-art $\ell _{1}$ -regularization to enforce sparsity and spatial consistency of the estimated distributions. The proposed method is validated in simulations and in vivo experiments, using a multi-echo gradient-echo (MEGE) sequence at 3 T. MERLIN is compared to the conventional single-voxel $\ell _{2}$ -regularized NNLS (rNNLS) and a multi-voxel extension with spatial priors (rNNLS + SP), where it consistently showed lower root mean squared errors of up to 70 percent for all parameters of interest in these simulations.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Oros-Peusquens, Ana-Maria
|0 P:(DE-Juel1)131782
|b 1
700 1 _ |a Iordanishvili, Elene
|0 P:(DE-Juel1)166343
|b 2
700 1 _ |a Shin, Seonyeong
|0 P:(DE-Juel1)176499
|b 3
700 1 _ |a Yun, Seong Dae
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Abbas, Zaheer
|0 P:(DE-Juel1)140186
|b 5
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 6
|e Corresponding author
773 _ _ |a 10.1109/TMI.2019.2910386
|g p. 1 - 1
|0 PERI:(DE-600)2068206-2
|n 11
|p 2676 - 2686
|t IEEE transactions on medical imaging
|v 38
|y 2019
|x 1558-254X
856 4 _ |u https://juser.fz-juelich.de/record/862505/files/08688423-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/862505/files/08688423.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/862505/files/20190426091311948.pdf
856 4 _ |u https://juser.fz-juelich.de/record/862505/files/08688423-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/862505/files/08688423.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/862505/files/20190426091311948.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:862505
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162442
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131782
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)176499
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)140186
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T MED IMAGING : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE T MED IMAGING : 2017
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21