000862510 001__ 862510
000862510 005__ 20210130001425.0
000862510 0247_ $$2doi$$a10.1103/PhysRevMaterials.3.044604
000862510 0247_ $$2Handle$$a2128/22132
000862510 0247_ $$2WOS$$aWOS:000464762300001
000862510 037__ $$aFZJ-2019-02814
000862510 082__ $$a530
000862510 1001_ $$0P:(DE-Juel1)161427$$aAndrä, M.$$b0$$eCorresponding author
000862510 245__ $$aChemical control of the electrical surface properties in donor-doped transition metal oxides
000862510 260__ $$aCollege Park, MD$$bAPS$$c2019
000862510 3367_ $$2DRIVER$$aarticle
000862510 3367_ $$2DataCite$$aOutput Types/Journal article
000862510 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1556283081_18013
000862510 3367_ $$2BibTeX$$aARTICLE
000862510 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862510 3367_ $$00$$2EndNote$$aJournal Article
000862510 520__ $$aDonor-doped transition metal oxides such as donor-doped strontium titanate (n−SrTiO3) are of fundamental importance for oxide electronic devices as well as for electronic surface and interface engineering. Here we quantitatively analyze the variable band alignment and the resulting space charge layer at the surface of n−SrTiO3, determined by its surface redox chemistry. Synchrotron-based ambient-pressure x-ray photoelectron spectroscopy conducted under applied thermodynamic bias is used to access electronic structure and chemistry of the surface. We find an electron depletion layer driven by cationic surface point defects that are controlled by adjusting the ambient atmosphere (pO2). We correlate the pO2 dependence to a response of the strontium sublattice, namely the precipitation of strontium oxide and the formation of charged strontium vacancies at the surface. We suggest the reversible conversion of surface-terminating strontium oxide into extended strontium oxide clusters as the responsible process by resolving chemical dynamics in situ. As we show, atomic control of these subtle changes in the surface redox chemistry allows us to tailor electrical transport properties along the n−SrTiO3 surface. Our study thereby gives access to engineering electronic band bending in transition metal oxides by the control of the surface chemistry.
000862510 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000862510 588__ $$aDataset connected to CrossRef
000862510 7001_ $$0P:(DE-Juel1)172019$$aBluhm, H.$$b1
000862510 7001_ $$0P:(DE-Juel1)130620$$aDittmann, R.$$b2
000862510 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus Michael$$b3
000862510 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b4
000862510 7001_ $$0P:(DE-Juel1)166093$$aMüller, David$$b5
000862510 7001_ $$0P:(DE-Juel1)130677$$aGunkel, F.$$b6
000862510 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.3.044604$$gVol. 3, no. 4, p. 044604$$n4$$p044604$$tPhysical review materials$$v3$$x2475-9953$$y2019
000862510 8564_ $$uhttps://juser.fz-juelich.de/record/862510/files/PhysRevMaterials.3.044604.pdf$$yOpenAccess
000862510 8564_ $$uhttps://juser.fz-juelich.de/record/862510/files/PhysRevMaterials.3.044604.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862510 909CO $$ooai:juser.fz-juelich.de:862510$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161427$$aForschungszentrum Jülich$$b0$$kFZJ
000862510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b1$$kFZJ
000862510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b2$$kFZJ
000862510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b3$$kFZJ
000862510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b4$$kFZJ
000862510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166093$$aForschungszentrum Jülich$$b5$$kFZJ
000862510 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b6$$kFZJ
000862510 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000862510 9141_ $$y2019
000862510 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862510 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000862510 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2017
000862510 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862510 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862510 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862510 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862510 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862510 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000862510 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000862510 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x2
000862510 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x3
000862510 980__ $$ajournal
000862510 980__ $$aVDB
000862510 980__ $$aUNRESTRICTED
000862510 980__ $$aI:(DE-Juel1)PGI-7-20110106
000862510 980__ $$aI:(DE-82)080009_20140620
000862510 980__ $$aI:(DE-Juel1)PGI-11-20170113
000862510 980__ $$aI:(DE-Juel1)PGI-6-20110106
000862510 9801_ $$aFullTexts