001     862510
005     20210130001425.0
024 7 _ |a 10.1103/PhysRevMaterials.3.044604
|2 doi
024 7 _ |a 2128/22132
|2 Handle
024 7 _ |a WOS:000464762300001
|2 WOS
037 _ _ |a FZJ-2019-02814
082 _ _ |a 530
100 1 _ |a Andrä, M.
|0 P:(DE-Juel1)161427
|b 0
|e Corresponding author
245 _ _ |a Chemical control of the electrical surface properties in donor-doped transition metal oxides
260 _ _ |a College Park, MD
|c 2019
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1556283081_18013
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Donor-doped transition metal oxides such as donor-doped strontium titanate (n−SrTiO3) are of fundamental importance for oxide electronic devices as well as for electronic surface and interface engineering. Here we quantitatively analyze the variable band alignment and the resulting space charge layer at the surface of n−SrTiO3, determined by its surface redox chemistry. Synchrotron-based ambient-pressure x-ray photoelectron spectroscopy conducted under applied thermodynamic bias is used to access electronic structure and chemistry of the surface. We find an electron depletion layer driven by cationic surface point defects that are controlled by adjusting the ambient atmosphere (pO2). We correlate the pO2 dependence to a response of the strontium sublattice, namely the precipitation of strontium oxide and the formation of charged strontium vacancies at the surface. We suggest the reversible conversion of surface-terminating strontium oxide into extended strontium oxide clusters as the responsible process by resolving chemical dynamics in situ. As we show, atomic control of these subtle changes in the surface redox chemistry allows us to tailor electrical transport properties along the n−SrTiO3 surface. Our study thereby gives access to engineering electronic band bending in transition metal oxides by the control of the surface chemistry.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bluhm, H.
|0 P:(DE-Juel1)172019
|b 1
700 1 _ |a Dittmann, R.
|0 P:(DE-Juel1)130620
|b 2
700 1 _ |a Schneider, Claus Michael
|0 P:(DE-Juel1)130948
|b 3
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 4
700 1 _ |a Müller, David
|0 P:(DE-Juel1)166093
|b 5
700 1 _ |a Gunkel, F.
|0 P:(DE-Juel1)130677
|b 6
773 _ _ |a 10.1103/PhysRevMaterials.3.044604
|g Vol. 3, no. 4, p. 044604
|0 PERI:(DE-600)2898355-5
|n 4
|p 044604
|t Physical review materials
|v 3
|y 2019
|x 2475-9953
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862510/files/PhysRevMaterials.3.044604.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862510/files/PhysRevMaterials.3.044604.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862510
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172019
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166093
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130677
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2017
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21