000862520 001__ 862520
000862520 005__ 20210130001430.0
000862520 0247_ $$2doi$$a10.1021/acssensors.8b01599
000862520 0247_ $$2Handle$$a2128/22138
000862520 0247_ $$2altmetric$$aaltmetric:57271329
000862520 0247_ $$2pmid$$apmid:30864782
000862520 0247_ $$2WOS$$aWOS:000466442500013
000862520 037__ $$aFZJ-2019-02823
000862520 082__ $$a570
000862520 1001_ $$0P:(DE-HGF)0$$aBurgstaller, Sandra$$b0
000862520 245__ $$apH-Lemon, a Fluorescent Protein-Based pH Reporter for Acidic Compartments
000862520 260__ $$aWashington, DC$$bACS Publications$$c2019
000862520 3367_ $$2DRIVER$$aarticle
000862520 3367_ $$2DataCite$$aOutput Types/Journal article
000862520 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1556545969_6410
000862520 3367_ $$2BibTeX$$aARTICLE
000862520 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862520 3367_ $$00$$2EndNote$$aJournal Article
000862520 520__ $$aDistinct subcellular pH levels, especially in lysosomes and endosomes, are essential for the degradation, modification, sorting, accumulation, and secretion of macromolecules. Here, we engineered a novel genetically encoded pH probe by fusing the pH-stable cyan fluorescent protein (FP) variant, mTurquoise2, to the highly pH-sensitive enhanced yellow fluorescent protein, EYFP. This approach yielded a ratiometric biosensor—referred to as pH-Lemon—optimized for live imaging of distinct pH conditions within acidic cellular compartments. Protonation of pH-Lemon under acidic conditions significantly decreases the yellow fluorescence while the cyan fluorescence increases due to reduced Förster resonance energy transfer (FRET) efficiency. Because of its freely reversible and ratiometric responses, pH-Lemon represents a fluorescent biosensor for pH dynamics. pH-Lemon also shows a sizable pH-dependent fluorescence lifetime change that can be used in fluorescence lifetime imaging microscopy as an alternative observation method for the study of pH in acidic cellular compartments. Fusion of pH-Lemon to the protein microtubule-associated protein 1A/1B-light chain 3B (LC3B), a specific marker of autophagic membranes, resulted in its targeting within autolysosomes of HeLa cells. Moreover, fusion of pH-Lemon to a glycophosphatidylinositol (GPI) anchor allowed us to monitor the entire luminal space of the secretory pathway and the exoplasmic leaflet of the plasma membrane. Utilizing this new pH probe, we revealed neutral and acidic vesicles and substructures inside cells, highlighting compartments of distinct pH throughout the endomembrane system. These data demonstrate, that this novel pH sensor, pH-Lemon, is very suitable for the study of local pH dynamics of subcellular microstructures in living cells.
000862520 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000862520 588__ $$aDataset connected to CrossRef
000862520 7001_ $$0P:(DE-HGF)0$$aBischof, Helmut$$b1
000862520 7001_ $$0P:(DE-Juel1)131924$$aGensch, Thomas$$b2$$ufzj
000862520 7001_ $$0P:(DE-HGF)0$$aStryeck, Sarah$$b3
000862520 7001_ $$0P:(DE-HGF)0$$aGottschalk, Benjamin$$b4
000862520 7001_ $$0P:(DE-HGF)0$$aRamadani-Muja, Jeta$$b5
000862520 7001_ $$0P:(DE-HGF)0$$aEroglu, Emrah$$b6
000862520 7001_ $$0P:(DE-HGF)0$$aRost, Rene$$b7
000862520 7001_ $$0P:(DE-Juel1)131909$$aBalfanz, Sabine$$b8$$ufzj
000862520 7001_ $$0P:(DE-HGF)0$$aBaumann, Arnd$$b9
000862520 7001_ $$0P:(DE-HGF)0$$aWaldeck-Weiermair, Markus$$b10
000862520 7001_ $$0P:(DE-HGF)0$$aHay, Jesse C.$$b11
000862520 7001_ $$0P:(DE-HGF)0$$aMadl, Tobias$$b12
000862520 7001_ $$0P:(DE-HGF)0$$aGraier, Wolfgang F.$$b13
000862520 7001_ $$00000-0001-6327-8729$$aMalli, Roland$$b14$$eCorresponding author
000862520 773__ $$0PERI:(DE-600)2843497-3$$a10.1021/acssensors.8b01599$$gVol. 4, no. 4, p. 883 - 891$$n4$$p883 - 891$$tACS sensors$$v4$$x2379-3694$$y2019
000862520 8564_ $$uhttps://juser.fz-juelich.de/record/862520/files/acssensors.8b01599-1.pdf$$yOpenAccess
000862520 8564_ $$uhttps://juser.fz-juelich.de/record/862520/files/acssensors.8b01599-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862520 909CO $$ooai:juser.fz-juelich.de:862520$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862520 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131924$$aForschungszentrum Jülich$$b2$$kFZJ
000862520 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131909$$aForschungszentrum Jülich$$b8$$kFZJ
000862520 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000862520 9141_ $$y2019
000862520 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862520 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000862520 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS SENSORS : 2017
000862520 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS SENSORS : 2017
000862520 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862520 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862520 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862520 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862520 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862520 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862520 920__ $$lyes
000862520 9201_ $$0I:(DE-Juel1)ICS-4-20110106$$kICS-4$$lZelluläre Biophysik$$x0
000862520 9801_ $$aFullTexts
000862520 980__ $$ajournal
000862520 980__ $$aVDB
000862520 980__ $$aUNRESTRICTED
000862520 980__ $$aI:(DE-Juel1)ICS-4-20110106
000862520 981__ $$aI:(DE-Juel1)IBI-1-20200312