001     862520
005     20210130001430.0
024 7 _ |a 10.1021/acssensors.8b01599
|2 doi
024 7 _ |a 2128/22138
|2 Handle
024 7 _ |a altmetric:57271329
|2 altmetric
024 7 _ |a pmid:30864782
|2 pmid
024 7 _ |a WOS:000466442500013
|2 WOS
037 _ _ |a FZJ-2019-02823
082 _ _ |a 570
100 1 _ |a Burgstaller, Sandra
|0 P:(DE-HGF)0
|b 0
245 _ _ |a pH-Lemon, a Fluorescent Protein-Based pH Reporter for Acidic Compartments
260 _ _ |a Washington, DC
|c 2019
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1556545969_6410
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Distinct subcellular pH levels, especially in lysosomes and endosomes, are essential for the degradation, modification, sorting, accumulation, and secretion of macromolecules. Here, we engineered a novel genetically encoded pH probe by fusing the pH-stable cyan fluorescent protein (FP) variant, mTurquoise2, to the highly pH-sensitive enhanced yellow fluorescent protein, EYFP. This approach yielded a ratiometric biosensor—referred to as pH-Lemon—optimized for live imaging of distinct pH conditions within acidic cellular compartments. Protonation of pH-Lemon under acidic conditions significantly decreases the yellow fluorescence while the cyan fluorescence increases due to reduced Förster resonance energy transfer (FRET) efficiency. Because of its freely reversible and ratiometric responses, pH-Lemon represents a fluorescent biosensor for pH dynamics. pH-Lemon also shows a sizable pH-dependent fluorescence lifetime change that can be used in fluorescence lifetime imaging microscopy as an alternative observation method for the study of pH in acidic cellular compartments. Fusion of pH-Lemon to the protein microtubule-associated protein 1A/1B-light chain 3B (LC3B), a specific marker of autophagic membranes, resulted in its targeting within autolysosomes of HeLa cells. Moreover, fusion of pH-Lemon to a glycophosphatidylinositol (GPI) anchor allowed us to monitor the entire luminal space of the secretory pathway and the exoplasmic leaflet of the plasma membrane. Utilizing this new pH probe, we revealed neutral and acidic vesicles and substructures inside cells, highlighting compartments of distinct pH throughout the endomembrane system. These data demonstrate, that this novel pH sensor, pH-Lemon, is very suitable for the study of local pH dynamics of subcellular microstructures in living cells.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bischof, Helmut
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gensch, Thomas
|0 P:(DE-Juel1)131924
|b 2
|u fzj
700 1 _ |a Stryeck, Sarah
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gottschalk, Benjamin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ramadani-Muja, Jeta
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Eroglu, Emrah
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rost, Rene
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Balfanz, Sabine
|0 P:(DE-Juel1)131909
|b 8
|u fzj
700 1 _ |a Baumann, Arnd
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Waldeck-Weiermair, Markus
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Hay, Jesse C.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Madl, Tobias
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Graier, Wolfgang F.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Malli, Roland
|0 0000-0001-6327-8729
|b 14
|e Corresponding author
773 _ _ |a 10.1021/acssensors.8b01599
|g Vol. 4, no. 4, p. 883 - 891
|0 PERI:(DE-600)2843497-3
|n 4
|p 883 - 891
|t ACS sensors
|v 4
|y 2019
|x 2379-3694
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/862520/files/acssensors.8b01599-1.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/862520/files/acssensors.8b01599-1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:862520
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131924
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131909
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Free to read
|0 LIC:(DE-HGF)PublisherOA
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS SENSORS : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS SENSORS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-4-20110106
|k ICS-4
|l Zelluläre Biophysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
981 _ _ |a I:(DE-Juel1)IBI-1-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21