000862526 001__ 862526
000862526 005__ 20210130001431.0
000862526 0247_ $$2doi$$a10.1016/j.catena.2019.04.023
000862526 0247_ $$2ISSN$$a0008-7769
000862526 0247_ $$2ISSN$$a0341-8162
000862526 0247_ $$2ISSN$$a1872-6887
000862526 0247_ $$2Handle$$a2128/22158
000862526 0247_ $$2altmetric$$aaltmetric:59678265
000862526 0247_ $$2WOS$$aWOS:000472244900014
000862526 037__ $$aFZJ-2019-02825
000862526 082__ $$a550
000862526 1001_ $$0P:(DE-Juel1)168555$$aDal Bo, Igor$$b0$$eCorresponding author
000862526 245__ $$aGeophysical imaging of regolith in landscapes along a climate and vegetation gradient in the Chilean coastal cordillera
000862526 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000862526 3367_ $$2DRIVER$$aarticle
000862526 3367_ $$2DataCite$$aOutput Types/Journal article
000862526 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1557129683_5874
000862526 3367_ $$2BibTeX$$aARTICLE
000862526 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862526 3367_ $$00$$2EndNote$$aJournal Article
000862526 520__ $$aMany studies have recently shown the potential of geophysical tools in bridging the information gap between individual point-scale measurements. Here, we upscale and extend the point-scale layering information from pedons (excavated pit of 1 m2) using geophysical methods. We applied multi-frequency ground-penetrating radar (GPR) in four study areas in the extreme climate and vegetation gradient of the Chilean Coastal Cordillera. The main goals of this study were to understand how granitic based regolith material varies depending on climate, vegetation cover, aspect, and topography.GPR was successfully used in all four study areas. Reflections, which were imaged up to a depth of 8 m, could be associated with boundaries visible in the pedons. The main recognizable reflections were linked with the interface between the mobile soil and the immobile saprolite. This boundary is characterized by hyperbolic-shape features, probably connected to heterogeneities (e.g. pebbles). A deeper GPR penetration depth in south-facing hillslopes was observed than in north-facing hillslopes. This is probably due to less sun exposure in the south facing slopes, which results in higher soil water content and denser plant growth, facilitating weathering processes. Furthermore, thicker layers in the GPR profiles are visible going from north to south along the latitude. Most of these observations were in agreement with the soil pedons.These results demonstrate the utility of the GPR technique for characterizing subsurface variations in regolith properties (e.g. thickness, boundaries). Additional soil pedons should be excavated based on GPR results. Applying noninvasive geophysical methods could improve the understanding of the interactions between soil formation, vegetation, and other environmental parameters.
000862526 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000862526 588__ $$aDataset connected to CrossRef
000862526 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b1$$ufzj
000862526 7001_ $$0P:(DE-HGF)0$$aSchaller, Mirjam$$b2
000862526 7001_ $$0P:(DE-HGF)0$$aEhlers, Todd A.$$b3
000862526 7001_ $$0P:(DE-Juel1)168553$$aKaufmann, Manuela$$b4$$ufzj
000862526 7001_ $$0P:(DE-HGF)0$$aFuentes Espoz, Juan Pablo$$b5
000862526 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6$$ufzj
000862526 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b7$$ufzj
000862526 773__ $$0PERI:(DE-600)1492500-x$$a10.1016/j.catena.2019.04.023$$gVol. 180, p. 146 - 159$$p146 - 159$$tCatena$$v180$$x0341-8162$$y2019
000862526 8564_ $$uhttps://juser.fz-juelich.de/record/862526/files/Preprint%20of%20the%20final%20paper-1.pdf$$yOpenAccess
000862526 8564_ $$uhttps://juser.fz-juelich.de/record/862526/files/Preprint%20of%20the%20final%20paper-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862526 909CO $$ooai:juser.fz-juelich.de:862526$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000862526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168555$$aForschungszentrum Jülich$$b0$$kFZJ
000862526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b1$$kFZJ
000862526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168553$$aForschungszentrum Jülich$$b4$$kFZJ
000862526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000862526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b7$$kFZJ
000862526 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000862526 9141_ $$y2019
000862526 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862526 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000862526 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862526 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCATENA : 2017
000862526 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862526 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862526 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862526 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862526 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862526 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862526 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000862526 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862526 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862526 920__ $$lyes
000862526 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000862526 980__ $$ajournal
000862526 980__ $$aVDB
000862526 980__ $$aUNRESTRICTED
000862526 980__ $$aI:(DE-Juel1)IBG-3-20101118
000862526 9801_ $$aFullTexts