000862547 001__ 862547
000862547 005__ 20240712113051.0
000862547 0247_ $$2doi$$a10.1063/1.5028354
000862547 0247_ $$2ISSN$$a0021-9606
000862547 0247_ $$2ISSN$$a1089-7690
000862547 0247_ $$2ISSN$$a1520-9032
000862547 0247_ $$2Handle$$a2128/23494
000862547 0247_ $$2altmetric$$aaltmetric:45184830
000862547 0247_ $$2pmid$$apmid:30384758
000862547 0247_ $$2WOS$$aWOS:000449103200021
000862547 037__ $$aFZJ-2019-02841
000862547 082__ $$a530
000862547 1001_ $$0P:(DE-HGF)0$$aMichalowsky, Julian$$b0
000862547 245__ $$aA polarizable MARTINI model for monovalent ions in aqueous solution
000862547 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2018
000862547 3367_ $$2DRIVER$$aarticle
000862547 3367_ $$2DataCite$$aOutput Types/Journal article
000862547 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575010470_25884
000862547 3367_ $$2BibTeX$$aARTICLE
000862547 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000862547 3367_ $$00$$2EndNote$$aJournal Article
000862547 520__ $$aWe present a new polarizable coarse-grained martini force field for monovalent ions, called refIon, which is developed mainly for the accurate reproduction of electrostatic properties in aqueous electrolyte solutions. The ion model relies on full long-range Coulomb interactions and introduces satellite charges around the central interaction site in order to model molecular polarization effects. All force field parameters are matched to reproduce the mass density and the static dielectric permittivity of aqueous NaCl solutions, such that experimental values are well-reproduced up to moderate salt concentrations of 2 mol/l. In addition, an improved agreement with experimentally measured ionic conductivities is observed. Our model is validated with regard to analytic solutions for the ion distribution around highly charged rod-like polyelectrolytes in combination with atomistic simulations and experimental results concerning structural properties of lipid bilayers in the presence of distinct salt concentrations. Further results regarding the coordination numbers of counterions around dilute poly(styrene sulfonate) and poly(diallyldimethylammonium) polyelectrolyte chains also highlight the applicability of our approach. The introduction of our force field allows us to eliminate heuristic scaling factors, as reported for previous martini ion models in terms of effective salt concentrations, and in consequence provides a better agreement between simulation and experimental results. The presented approach is specifically useful for recent martini attempts that focus on highly charged systems—such as models of DNA, polyelectrolytes or polyelectrolyte complexes—where precise studies of electrostatic effects and charge transport processes are essential.
000862547 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000862547 588__ $$aDataset connected to CrossRef
000862547 7001_ $$0P:(DE-HGF)0$$aZeman, Johannes$$b1
000862547 7001_ $$00000-0003-2739-310X$$aHolm, Christian$$b2
000862547 7001_ $$0P:(DE-Juel1)173730$$aSmiatek, Jens$$b3$$eCorresponding author
000862547 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.5028354$$gVol. 149, no. 16, p. 163319 -$$n16$$p163319$$tThe journal of chemical physics$$v149$$x1089-7690$$y2018
000862547 8564_ $$uhttps://juser.fz-juelich.de/record/862547/files/1.5028354.pdf$$yOpenAccess
000862547 8564_ $$uhttps://juser.fz-juelich.de/record/862547/files/1.5028354.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000862547 909CO $$ooai:juser.fz-juelich.de:862547$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000862547 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173730$$aForschungszentrum Jülich$$b3$$kFZJ
000862547 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000862547 9141_ $$y2019
000862547 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000862547 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000862547 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2017
000862547 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000862547 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000862547 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000862547 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000862547 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000862547 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000862547 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000862547 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000862547 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000862547 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000862547 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000862547 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000862547 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000862547 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000862547 9801_ $$aFullTexts
000862547 980__ $$ajournal
000862547 980__ $$aVDB
000862547 980__ $$aUNRESTRICTED
000862547 980__ $$aI:(DE-Juel1)IEK-12-20141217
000862547 981__ $$aI:(DE-Juel1)IMD-4-20141217