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We present a new polarizable coarse-grained martini force field for monovalent ions, called refIon,

which is developed mainly for the accurate reproduction of electrostatic properties in aqueous elec-

trolyte solutions. The ion model relies on full long-range Coulomb interactions and introduces satellite

charges around the central interaction site in order to model molecular polarization effects. All force

field parameters are matched to reproduce the mass density and the static dielectric permittivity

of aqueous NaCl solutions, such that experimental values are well-reproduced up to moderate salt

concentrations of 2 mol/l. In addition, an improved agreement with experimentally measured ionic

conductivities is observed. Our model is validated with regard to analytic solutions for the ion dis-

tribution around highly charged rod-like polyelectrolytes in combination with atomistic simulations

and experimental results concerning structural properties of lipid bilayers in the presence of dis-

tinct salt concentrations. Further results regarding the coordination numbers of counterions around

dilute poly(styrene sulfonate) and poly(diallyldimethylammonium) polyelectrolyte chains also high-

light the applicability of our approach. The introduction of our force field allows us to eliminate

heuristic scaling factors, as reported for previous martini ion models in terms of effective salt con-

centrations, and in consequence provides a better agreement between simulation and experimental

results. The presented approach is specifically useful for recent martini attempts that focus on highly

charged systems—such as models of DNA, polyelectrolytes or polyelectrolyte complexes—where

precise studies of electrostatic effects and charge transport processes are essential. Published by AIP

Publishing. https://doi.org/10.1063/1.5028354

I. INTRODUCTION

Since its introduction, the coarse-grained martini force

field1–3 was often used for the study of macromolecular

systems. Although originally developed for coarse-grained

molecular dynamics (MD) simulations of lipid bilayer sys-

tems,1 its range of application was extended toward proteins,4

carbohydrates,5 polymers,6–8 nucleic acids,9 and polyelec-

trolytes.10 With regard to its ongoing success, major benefits

of the martini approach are its transferability and its com-

putational efficiency, which result from the reduced number

of degrees of freedom and the use of larger time steps when

compared to atomistic approaches. In contrast to many other

coarse-grained models, the martini force field also retains

some of the chemical details for predefined molecular groups

such that these basic compounds can be combined indepen-

dently for a broad range of macromolecular structures. Yet,

martinimodels follow a philosophy of simplicity and thus rely

on small numbers of bead types and interaction sites, each rep-

resenting a group of atoms. In most cases, a 4-to-1 mapping

scheme is applied so that each martini bead represents four

heavy atoms, although there are also some exceptions from

this rule.3

a)Electronic mail: smiatek@icp.uni-stuttgart.de

In more detail, the martini force field includes param-

eters to tune hydrophobicity and hydrogen bond donor or

acceptor properties for each bead type by utilizing different

values for the prefactor ǫLJ in the Lennard-Jones (LJ) inter-

action energies. In consequence, LJ prefactors in martini are

divided into discrete “interaction levels,” where higher lev-

els represent lower polarity and thus a weaker van der Waals

attraction due to smaller values of ǫLJ. The corresponding

parameters were chosen to reproduce partitioning coefficients

between polar and apolar media obtained by atomistic simula-

tions and experiments.1,3 Moreover, all standard LJ interaction

sites1–3 have an effective particle diameter of σLJ = 0.47 nm,

whereas some bead types also have a charge of Q = ±1 e

or Q = +2 e (see Ref. 11). Due to the large size of the par-

ticles, single ions in the martini force field can be regarded

as a central charge, which is surrounded by its first hydration

shell.3

Besides its simple transferability to distinct systems, sev-

eral approximations in previous versions of the force field

can be identified as the reason for spurious artifacts such

that improvements are mandatory in order to establish its

usability for future applications.12,13 Most often, the aforemen-

tioned limitations can be related to purposes of computational

efficiency such that computationally expensive electrostatic

interactions between charged groups were significantly over-

simplified in previous versions of the approach.2,10,13,14 One of

the major limitations of the original martini force field1,2 is its
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reduced water model, which represents four water molecules

by a single Lennard-Jones sphere, thus disregarding the com-

plex and diverse properties of water as a polar solvent.15 The

polarizable water approach developed by Yesylevskyy et al.16

addressed this problem by introducing a three-site polariz-

able coarse-grained water model that includes two satellite

(dummy) particles of opposite partial charge, which move on a

spherical shell around the central LJ interaction site. Although

some of us among other groups already demonstrated its over-

all validity for the study of polyelectrolyte complexes and

aqueous electrolyte solutions, deviations from atomistic MD

results and experimental data imply the introduction of arti-

ficial scaling factors in order to establish effective ion con-

centrations.10,14 Our recent efforts brought forth the refPOL

water model,13 a refined version of the previous polarizable

martini water model. In addition to the introduction of more

effective and robust simulation parameters, the main benefits

of our refinement are an improved dielectric behavior in com-

bination with more accurate water mass densities, which are

both important for reproducing the thermodynamic properties

of highly charged systems.

Hence, the recent interest in highly charged aqueous sys-

tems and their study with martini models requires adequate

consideration of long-range electrostatic interactions10,12,13 in

combination with more reliable ion force fields. Therefore, the

need for an adequate ion force field increases, as ions are not

only important components of the solution, but also govern

electrostatic properties to a high degree. For instance, crucial

properties like ion distributions around charged objects17,18

need to be accurately reproduced by such refinements. As it

was shown in Ref. 10, a wrong reproduction of ion pairing

effects significantly influences several dynamic and structural

properties of the solution. Moreover, charge-induced electro-

static screening effects dominate macromolecular aggrega-

tion processes and transport phenomena.19 Thus, a precise

response of the system regarding electrostatics in combina-

tion with a reliable ion model are essential when simulat-

ing highly charged macromolecules such as DNA or other

polyelectrolytes in aqueous solution.

In this article, we present the refIon model, a derivate

of the refPOL water model representing a coarse-grained

approach for monovalent ions. The refIon model is specifi-

cally designed to reproduce the dielectric permittivity of low

and moderately concentrated sodium chloride solutions up to

2 mol/l, thus addressing one of the major shortcomings of

the classic martini ions.14 Our new ion force field also repro-

duces the experimentally measured concentration-dependent

mass density, which, in combination with further electrostatic

effects, crucially influences structural properties of lipid bilay-

ers as common examples. In contrast to the original martini

ion model, the introduction of ambiguous scaling factors (as

pointed out in more detail in Ref. 10) is avoided such that

previous considerations of effective salt concentrations can be

discarded with the help of our model. Furthermore, while the

new force field does not improve on the diffusive behavior

of martini ions, it gives a more accurate estimate concern-

ing the conductivity of NaCl solutions for concentrations up

to 2 mol/l. The refIon approach is in large parts identical to

the recently introduced novel polarizable martiniwater model

(refPOL)13 such that the combination of both force fields in

martini simulations is recommended. Due to the larger num-

ber of interaction sites for the ions, the computational effort

is higher when compared with previous approaches but can

in turn be decreased by improved simulation parameters.13

In order to verify our model, we simulate a charged rod-like

polyelectrolyte surrounded by polarizable ions and compare

our findings to analytic results derived from the Poisson-

Boltzmann (PB) cell model theory.20 Further applicability of

our approach is demonstrated by the values of counterion coor-

dination numbers around dilute poly(styrene sulfonate) (PSS)

and poly(diallyldimethylammonium) (PDADMA) polyelec-

trolyte chains in aqueous solution. As a last point, we study

the area per lipid of a POPC (1-palmitoyl-2-oleoyl-sn-glycero-

3-phosphocholine) lipid bilayer in the presence of distinct

salt concentrations. The outcomes of these simulations are

compared with previous numerical results and experimental

values.

The remainder of this article is structured as follows: In

Sec. II, we introduce the parameters and the topology of the

refIon model. In Sec. III, we comment on the chosen methods

and the essential theoretical background of the test systems.

The numerical details of our simulations are presented in

Sec. IV, and all simulation results are shown in Sec. V. We

briefly conclude and summarize our results in Sec. VI.

II. THE POLARIZABLE MARTINI REFION MODEL

The refIon force field is closely related to the origi-

nal polarizable water force field for martini introduced by

Yesylevskyy et al.16 and relies on the same principles as its

refined successor, the refPOL water model.13 Therefore, we

employ the same basic structure for the three-site ion model

that is already known from the refPOL water model. While

the polarizable water force field aims at mimicking the ori-

entational polarization effects of water, the ionic force field

intends to reproduce the global system response on increas-

ing salt concentration in aqueous solution, mimicking an ion

with its first hydration shell. Here, we explicitly focus on accu-

rate values for the relative permittivity and the mass density of

aqueous NaCl solutions in combination with the refPOL water

model. Consequently, we used both quantities as target func-

tions to parameterize our force field for cations and anions.

A schematic illustration of the PNA and PCL (polar-

izable Na and Cl, respectively) refIon models is shown in

Fig. 1. All interaction sites carry the name of the ion species

(NA or CL, which stands for sodium and chloride ions)

and an additional extension (M: minus; C: central; P: plus).

NAM (CLM) and NAP (CLP) are satellite charges of bead

type D (dummy particles: no LJ potential) known from the

polarizable water models. Sodium ion center (NAC) [chlo-

ride ion center (CLC)] is the central particle and of the

type PQd (PQa), which are new bead types introduced with

the refIon model, as derived from the charged bead types2

Qd (Qa). As a consequence, LJ interactions are only associ-

ated with the central interaction site. While the central particle

carries all LJ interactions as well as the monovalent ion charge

(Q = ±1 e), the satellite particles carry opposite charges and

are responsible for the fluctuations of the dipole moment.
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FIG. 1. Schematics of the polarizable sodium (PNA) and

chloride (PCL) refIon models: the oppositely charged

dummy (bead type D) interaction sites NAP (CLP) and

NAM (CLM) (P and M identifying the charge as “plus”

and “minus,” respectively, with charge |q | = qNAP(CLP)

= −qNAM(CLM)) move on a spherical shell of radius

lS = 0.14 nm around the central interaction site NAC

(CLC), which is modeled using the bead type PQd (PQa).

The angle θ between the satellite charges is determined

via a combination of a harmonic angular potential with

force constant k and equilibrium angle θ0 = 0 rad and the

influence of the local environment.

With regard to the presence of two satellite particles with the

opposite charge, it follows that the central charge coincides

with the net charge of the bead. Both satellite charges are

attached to the NAC or CLC particle via constraints (fixed

length lS = 0.14 nm) and thus move on a spherical shell

around the central interaction site. The joint NAM-NAC-NAP

(CLM-CLC-CLP) is subject to a harmonic angular potential

with a force constant of k = 4.2 kJ/mol rad2 and an equi-

librium angle of θ0 = 0 rad so that the dipole moment van-

ishes in apolar media. Both beads in the coarse-grained refIon

model can be regarded as ions including their first hydration

shell.

During parameterization, we focused explicitly on the

reproduction of experimental values of the static permittiv-

ity and the mass density of aqueous NaCl solution at 298.15 K

for various concentrations. In the first parameterization step,

we used the cross-interactions between polarizable bead types

(PQa, PQd, and POL) to match the NaCl(aq) solution density;

the absolute values of the cation and anion satellite charges

(qNA and qCL, respectively) were then used as the main fitting

parameters for matching the permittivity. This procedure was

feasible with only minor interference between both processes,

as during early stages of the parameterization process the two

parameters proved to be largely decoupled. Notably, when

comparing the classical martini water (bead type P4) and its

cross-interactions with uncharged martini beads to the corre-

sponding interactions of the refPOL model, we observed a ten-

dency toward less attractive cross-interactions in the refPOL

model.13 The interaction levels for the refPOL model were

obtained by using an approach involving thermodynamic inte-

gration, a detailed description of which can be found in a previ-

ous publication.13 Unfortunately, thermodynamic integration

methods for single ions with long-range electrostatic interac-

tions are often challenging and exhibit spurious artifacts.21 In

order to circumvent these problems for the parameterization of

the refIon cross-interactions, and due to the similarity of the

modelling processes for both the refPOL and refIon models

(except for the central charge), one can safely assume that the

less attractive cross-interactions as observed for the refPOL

water model are also included in the polarizable refIon model.

Quantifying the differences in attractiveness between both

water models (P4 and refPOL) reveals that the addition of the

polarization mechanism seems to imply an average decrease

in the Lennard-Jones well depth of 〈∆ǫLJ〉 ≃ 0.74 kJ/mol.

Furthermore, 〈∆ǫLJ〉 is almost identical for all interaction lev-

els, as shown in Fig. 2. Therefore, the cross-interactions of the

PQa and PQd bead types with non-polarizable martini beads

were set to be roughly identical to those of the Qa and Qd bead

types, respectively, but with a reduced ǫ ′
LJ
= ǫLJ−0.74 kJ/mol.

In fact, even the original parameterization of the martini ions2

relies on simple assumptions such that the chosen procedure

allows our model to be consistent with previously established

cross-interactions between ions and standard bead types. The

results shown in Sec. V validate our choice. In order to keep

the simplistic nature of the martini force field intact, we

restricted the choice of interaction levels to the previously

introduced scaling factors16 of 100 % and 95 % for ǫLJ wher-

ever possible. The interaction levels between the two refIon

species and the refPOL model were determined via the solu-

tion mass density. The resulting interaction matrix is shown

in Table I and verified by the numerical results presented

in Sec. V.

The final parameters yielding the best agreement for the

reference quantities are |qNA | = 0.10 e for the cation and

|qCL | = 0.55 e for the anion satellite charges. In agreement

with version 2.2 of the martini force field, all beads (except

FIG. 2. Lennard-Jones well depth ǫLJ before (red circles) and after (green

squares) converting the classical martini water model (bead type P4) to the

refPOL force field. The x-axis is composed of the original interaction levels

between P4 and other martini beads; the data show to what value ǫLJ has

been changed in the refPOL model for a corresponding cross interaction. The

difference ∆ǫLJ between the water models with and without a polarizability

mechanism is nearly uniform between all cross-interactions, which has been

exploited during the parameterization process of the refIon model.
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TABLE I. Lennard-Jones (LJ) interaction matrix for PQa and PQd with other martini bead types. Different LJ interaction strengths are given in martini

interaction levels (I-VIII in accordance with the definition in Ref. 2) and a scaling factor a (an empty field corresponds to a = 100 %); the LJ well depth ǫLJ is

given in kJ/mol. For all interactions, the effective particle diameter is σLJ = 0.47 nm.

Bead type P5. . .1 Nda Nd Na N0 C5 C4 C3 C2,1 Qda Qd Qa Q0 POL PQa PQd

PQa I I I III IV V VII VIII VIII II IV V VIII III V VIII

a (%) 95 95 95 95 95 90 80 95 95 90 80 95

ǫ 4.75 4.75 4.75 3.8 3.325 2.79 2.3 2.0 1.6 4.275 3.325 2.79 1.6 3.8 3.1 2.0

PQd I I III I IV V VII VIII VIII II V IV VIII III VIII V

a (%) 95 95 95 95 95 90 80 95 90 95 80 95

ǫ 4.75 4.75 3.8 4.75 3.325 2.79 2.3 2.0 1.6 4.275 2.79 3.325 1.6 3.8 2.0 3.1

for ring type particles) share the same effective particle diam-

eter with σLJ = 0.47 nm, which also defines the diameter for

the PQa and PQd bead type. In consequence, all interaction

levels for standard beads are defined solely by the LJ potential

well depth ǫLJ.
2,3 A summary of the final parameters for the

refIon model is presented in Table II.

III. METHODS

In Sec. III A, the computational methods employed to

obtain the most important observables during parameterization

and analysis of the refIon model are introduced.

A. Calculation of relative permittivity values
via the fluctuation method

During the parameterization stage, we estimated the sys-

tem’s relative permittivity ǫ r, also called dielectric constant,

by using the dipole moment fluctuation formula23,24

ǫ r = 1 +
4π

3

〈

M
2
tot

〉

〈V〉kBT
, (1)

where 〈M2
tot〉 denotes the average squared net total dipole

moment in a simulation box of average volume 〈V〉 with

thermal energy kBT . Due to the presence of freely moving

charges in the system and the application of periodic boundary

conditions, this approach is not correct, as charges introduce

jumps in the total dipole moment when they leave the simula-

tion box and their periodic image enters from the opposite

side.25 Hence, the use of this equation is limited to rough

TABLE II. Summary of the main parameters for the refIon PNA and PCL

models.

Model name PNA PCL

Species Na+ Cl−

Central charge QNA/CL +1.0 e −1.0 e

Satellite charge |qNA/CL | 0.10 e 0.55 e

Mass m 72 amu

Lennard-Jones diameter σLJ 0.47 nm

Angular potential constant k 4.2 kJ/mol rad2

Equilibrium angle θ0 0 rad

Satellite/center distance lS 0.14 nm

estimates when investigating systems with free charges. The

exact calculation of the relative permittivity from the total sys-

tem current avoids this problem but is computationally more

expensive (Einstein-Helfand method, explained in detail below

and in Refs. 25 and 26). We therefore compared the results of

both approaches at the beginning of the parameterization pro-

cedure and found that the fluctuation method gets close to the

results of the Einstein-Helfand method but generally yields

slightly lower values for ǫ r. Given the large number of simu-

lations conducted during the parameterization stage, we used

the faster fluctuation method to estimate the impact of each

iteration concerning the satellite charge value on the relative

permittivity and used the Einstein-Helfand method to verify

our findings for the final version.

B. Calculation of relative permittivity values
via the Einstein-Helfand method

The Einstein-Helfand approach (described in different

variations in Refs. 25–28) is a way of extracting not only

the relative static permittivity ǫ r but also the static (zero-

frequency) ionic conductivity σ of a simulated system with

one linear fit to the mean squared displacement (MSD)
〈

∆M
2(t)

〉

=

〈

(〈M〉 −M(t))2
〉

of the total dipole moment M.

Here, the permittivity and conductivity are directly related to

the intercept m0 and slope m of the linear fit, respectively.

While the estimate of the conductivity is relatively stable, the

intercept of the fitted curve is highly sensitive to the fit data and

fit range.26 Identifying the correct fitting regime is therefore a

challenge of its own.

Since the total current of a system is directly related to the

dipole moment via (∂M/∂t) = J, the dipolar mean squared

displacement (MSD) is calculated from the current autocor-

relation function 〈J(t)J(0)〉 as a basis of the Einstein-Helfand

fit. It should be noted that one needs to distinguish between

translational and rotational contributions to the total dipole

moment.26 With regard to translational contributions, the cur-

rent is only composed of the center-of-mass velocities vcom of

molecular net charges, yielding the translational contribution

Jtrans(t) =

N
∑

i=1

qi vcom,i(t). (2)

Here, N is the total number of molecules and qi their respective

total charge.
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In order to yield the rotational contribution Jrot, we first

calculate the total current Jtot. Therefore, all partial charges

have to be taken into account,

Jtot(t) =
∑

i

∑

α

qi,α vi,α(t) =
∑

i

qi vcoc,i . (3)

In the above equation, the index “coc” identifies the center

of charge, and the index α means an iteration over all partial

charges in a molecule i. The rotational contribution then can

be calculated by Jrot = Jtot − Jtrans. Noteworthy, meaningful

values for the conductivity with the Einstein-Helfand fitting

procedure are obtained by taking only the translational part of

the total dipole moment into account.26,29,30 By contrast, an

accurate calculation of the dielectric permittivity requires the

total dipole moment and thus the center-of-charge contribu-

tion of the currents.25,31 For the following Einstein-Helfand

procedure, the distinction between the total and translational

dipole moment is omitted for the sake of clarity.

The Einstein-Helfand relation formulates the dipolar

MSD in the limit of t ≫ tac, with tac being the autocorrelation

time of the current25,26 in accordance with

lim
t→∞

〈

∆M
2(t)

〉

=

6Vσ(0)

β
t − 2

∫ ∞
0

τ〈J(τ)J(0)〉 dτ

=

6Vσ(0)

β
t + 2

〈

M
2
〉

=

6Vσ(0)

β
t +

6V ǫ0

β
[ǫ r(0) − 1] . (4)

Here, β = 1/kBT , and σ(0) and ǫ r(0) are the zero-frequency

(ω = 0) limits of the ionic conductivity and dielectric per-

mittivity, respectively. In addition, V denotes the volume in

isothermal-isochoric NVT systems and ǫ0 denotes the vacuum

permittivity. The transformations of Eq. (4) are done via partial

integration (from line 1 to 2, the reader is referred to Ref. 26)

and by inserting the previously established relation between

ǫ r(0) and
〈

M
2
〉

[from line 2 to 3, see Eq. (1)]. The static

Einstein-Helfand ionic conductivity and dielectric permittivity

can then be identified with

σEH =
β

6 V
m (5)

and

ǫ r,EH = 1 +
β

6 V ǫ0

m0, (6)

with m and m0 being the slope and intercept of a linear

fit to
〈

∆M
2(t)

〉

, respectively. In addition,
〈

∆M
2(t)

〉

can be

calculated from the current autocorrelation function,26

〈

∆M
2(t)

〉

= 2

[

t

∫ t

0

〈J(τ)J(0)〉dτ −
∫ t

0

τ〈J(τ)J(0)〉dτ
]

, (7)

which can be extracted from the simulation data. As mentioned

above, extraordinarily good statistics are needed for the fitting

procedure, and even under these constraints the identification

of the correct fitting regime can prove difficult. Thus, we use

the technique of sampling windows for our a posteriori analy-

sis of the Einstein-Helfand simulation data. In more detail, we

introduce fitting windows of size w = 5 ps, which corresponds

to 500 samples at a time step of ∆t = 10 fs. The individual

centers of nw = 400 windows were placed at tc, n = w/2 + nw,

with n ∈ [0, 399]. Each window sets the range for a single

Einstein-Helfand fit to the dipolar MSD data acquired from

the simulations. Plotting the results of all fits over tc facili-

tates the identification of a plateau region, where subsequent

windows yield similar results. The plateau region is chosen

based on the smoothness of the data sets, and the mean value

of the results concerning all windows inside the chosen region

is taken as the value for the relative permittivity of the system.

The small standard deviation associated with this procedure is

used as an error estimate.

C. Ion diffusion and Nernst-Einstein conductivity

The self-diffusion coefficient DA of an ion species A is

linked to the diffusional MSD of all particles i ∈ A via the

Einstein relation,32

lim
t→∞

〈

|ri(t) − ri(0)|2
〉

= 6 DA t, (8)

and can therefore be derived from simulation data via a fit to

the linear regime.

Ignoring correlated ionic motion, the ideal static (zero-

frequency) conductivity σNE can be calculated from the

self-diffusion coefficients D+ and D− of cations and anions,

respectively, using the Nernst-Einstein relation14,33–35

σNE =
ρq2

kBT
(D+ + D−). (9)

Here, q is the ionic charge of species in a 1 : 1 salt, ρ is

the particle density of ion pairs, kB is the Boltzmann con-

stant, and T denotes absolute temperature. Since the Nernst-

Einstein relation ignores molecular cross correlations, the

method of Einstein-Helfand fits described in Sec III B pro-

vides a more accurate estimate for the experimentally mea-

surable ionic conductivity.36 The amount of correlations can

be quantified via a phenomenological correction factor33

∆ ∈ [0, 1],

∆ = 1 − σEH

σNE

, (10)

which can be interpreted as the fraction of ion pairs that do not

contribute to the conductivity. Thus, large values for∆ indicate

strong correlation in ionic motion, while small values indicate

the opposite.

D. Ion distribution around a rod-like polyelectrolyte

The Manning-Oosawa (MO) counterion condensation

theory37–39 represents a mean-field approach that provides an

estimate of the fraction of condensed counterions around an

infinitely long and charged cylinder. The central quantity in

this framework is the so-called Manning parameter ξ = λB/b,

where λB = e2/(4πǫ0ǫ rkBT ) is the Bjerrum length, e is the

elementary charge, and b is the distance between two charged

groups along the chain. According to the theory, counterion

condensation sets in for values ξ ≥ 1, a condition which is

met for charged cylinders with small b and for solvents with

large λB. The fraction of condensed counterions can then be

determined by

θ = 1 −
1

ξ
. (11)

A more refined theory, with an explicit expression

for the radial counterion density around the polyelectrolyte
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is provided by the Poisson-Boltzmann (PB) cell model

approach.20,40 For the cylindrical cell model, an infinitely long

cylinder with line charge density e/b is enclosed in a cylindri-

cal cell with radius R. If there are no added salt ions present, the

PB equation is reduced by symmetry to the one-dimensional

equation

(

d2

dr2
+

1

r

d

dr

)

ψ(r) = −
∑

i

e

ǫ rǫ0

ρ∞,i exp

(

−eψ(r)

kBT

)

, (12)

where ψ(r) is the electrostatic potential with the radial coor-

dinate r and ρ∞,i is the bulk charge number density of species

i. This equation can be analytically solved, yielding the radial

fraction of condensed counterions20,40

θ(r) = 1 −
(

1

ξ

)

+
γM

ξ
tan γM ln

(

r

RM

)

, (13)

with Manning radius RM and prefactor γM . Both values can

be determined via two transcendental equations, which are

discussed in more detail in Refs. 20 and 40. For r = RM ,

Eq. (13) reduces to Eq. (11). The PB theory considers charge

densities, while we explicitly focus on charged Lennard-Jones

beads with excluded-volume interactions. This circumstance

has been partially remedied in our calculations by choosing a

renormalized value for r0 as the closest distance between ions

and the surface of the rod.

IV. SIMULATION DETAILS

Since major parameter choices are largely identical

throughout all simulations, we first summarize the similar-

ities, followed by a detailed description of each system in

its respective subsection. The software package GROMACS

5.041 was used for all simulations except those related to

the Einstein-Helfand analysis, for which we used a modified

version of GROMACS 4.6.5. The simulation parameters sug-

gested in Ref. 12 and established in our recent publication13

were used as general guidelines. Full periodic boundary condi-

tions were employed for all systems except in those related to

lipid bilayers. The velocity rescale thermostat by Bussi et al.42

was used for all simulations (except Einstein-Helfand), with

a relaxation time of τT = 1 ps. The isotropic (semi-isotropic

for lipid bilayer simulations) Parrinello-Rahman barostat43,44

was used to keep the pressure constant at 1 bar (relaxation

time τP = 12 ps), with the exception of the PB cell model

simulations, which were conducted in the NVT ensemble.

All simulations use the neighbor list and LJ and electro-

statics parameters defined by the new-Particle-Mesh-Ewald

(PME) parameter set described in Ref. 13. The time step

was chosen as ∆t = 20 fs, except for the Einstein-Helfand

analysis (∆t = 10 fs). Due to the use of the refPOL water

model,13 the background permittivity was set to ǫ r, bg = 2.5.

All systems were subjected to an energy minimization proce-

dure using the conjugate gradient method, followed by three

warmup stages. At each stage, 1000 time steps were cal-

culated, and the time step was increased with every stage

(∆t = 10 fs, ∆t = 15 fs, ∆t = 20 fs) to preserve the sta-

bility of the linear constraint solver (LINCS)45 algorithm,

which was used for all bonded interactions. Electrostatic

interactions were computed using the smooth particle-mesh-

Ewald method46 in all simulations. Subsequently, each system

was thoroughly equilibrated, followed by the production run.

Specific details of the individual simulations are given in

Subsections IV A–IV F.

A. Force field parameterization

The system employed for the force field parameteriza-

tion consists of polarizable ions at various concentrations

immersed in refPOL water13 in a cubic simulation box with an

initial cubic box length of lb = 7.0 nm. The starting structures

were created by the insertion of ions into the box at random

positions and subsequent solvation with refPOL water. The

initial (t = 0) concentrations of polarizable ions range from

0.1 mol/l to 2 mol/l. This amounts to a total of roughly 3000 ion

and water beads in one box for the lowest and roughly 2400 ion

and water beads for the highest initial concentration investi-

gated. The amount of water beads was adjusted accordingly to

match the corresponding ion concentration at a fixed initial box

size of (7 nm)3. The actual average concentration, however,

differs to the initial concentration due to changes in the box

volume caused by the barostat algorithm (NPT ensemble) as

discussed before. To parameterize the force field with regard to

the static relative permittivity, the values of ion satellite charge

values were swept independently for cations and anions, from

|q| = 0.05 e to |q| = 0.60 e. All runs were equilibrated for

20 ns. The production runs span 150 ns. The final parameter

set was chosen as the one showing the best agreement with

experimental density and permittivity data for all concentra-

tions. Equation (1) was used to determine the permittivity

from the simulations; as discussed in Sec. III B, the corre-

sponding values were then refined using the Einstein-Helfand

procedure.

B. Einstein-Helfand analysis

The basic systems investigated during the Einstein-

Helfand analysis are identical to the ones employed during

force field parameterization (see also Sec. IV A). Here, how-

ever, only the final parameter set obtained by previous analyses

was employed. Additionally, the same system was investi-

gated using classic martini ions2 for comparison. A modi-

fied version of the GROMACS 4.6.5 code was used for the

Einstein-Helfand simulations. The modifications allowed us

to store only the total current in every time step in order to

save disk space on the simulation trajectories while simulta-

neously accessing the system current with the highest possi-

ble resolution. To prevent the stochastic term in the velocity

rescale thermostat42 from interfering with the current mea-

surements, we employed the Nosé-Hoover thermostat with a

relaxation time of τT = 1.0 ps.44 The simulations were set

up using snapshots from previously finished parameteriza-

tion runs as starting configurations when possible and were

further equilibrated for another 25 ns at 298.15 K. The produc-

tion runs span 228 − 1 time steps of ∆t = 10 fs. Including the

starting configuration, this amounts to 228 simulation frames

(∼ 2.68 µs) to facilitate fast Fourier transformation of the

data.
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C. Atomistic reference simulations

In order to assess the structural properties of the refIon

force field, we performed atomistic MD simulations of aque-

ous sodium chloride solutions employing a Kirkwood-Buff

ion force field47,48 in combination with the SPC/E water

model.49 The NaCl concentrations in the atomistic simulations

at t = 0 ps range from 0.5 mol/l to 2 mol/l. The simulation box

is cubic, with a 4.0 nm initial box length. Both the concen-

tration and box size are subject to rescaling during the course

of the simulation due to isotropic pressure coupling via the

Berendsen barostat50 (P = 1 bar, τP = 3 ps). The Nosé-Hoover

thermostat44 was used to keep the temperature at T = 298.15 K

(τT = 3 ps). All runs were equilibrated for 1 ns. The production

runs span 100 ns.

D. Rod-like polyelectrolyte simulations

A charged rod-like polyelectrolyte was set up using 14

standard martini charged beads (bead type Qd or Qa), dis-

tributed uniformly along the z axis of a cubic simulation box

(NVT ensemble) with volume V = (7 nm)3. Since the cylin-

drical cell structure required by the PB cell model is not suited

for simulations employing periodic boundary conditions, we

approximate the correct conditions via a cylindrical pseudo

cell of the same volume as the cubic box.51 Therefore, the

radius R of the pseudo cell is R = lb/
√
π, where lb is the length

of the box vector. The positions of the rod ions were kept

fixed, and the system was solvated using 2766 beads of the ref-

POL model. We used periodic boundary conditions to extend

the polyelectrolyte’s size to infinity. A corresponding number

of 14 counterions (refIon model) was used to neutralize the

charge of the polyelectrolyte and to investigate the distribu-

tion of counterions around the rod. Two separate simulations

were conducted, using a positively charged rod and negative

counterions, and vice versa. The system was equilibrated for

50 ns. The production runs span 200 ns.

E. Single polyelectrolyte chains with counterions

The two systems each consist of a single 30mer of neg-

atively charged poly(styrene sulfonate) (PSS) and positively

charged poly(diallyldimethylammonium) (PDADMA) chains

with their corresponding counterions. The charge is neutral-

ized with 30 sodium ions in the first case and 30 chloride ions

in the latter case. The force field parameters and the topol-

ogy of the martini PSS and PDADMA models are described

in more detail in Ref. 10. We follow the same simulation

protocol as in the aforementioned reference and also make

use of data produced employing atomistic simulations with

the OPLS/AA force field52 and the SPC/E water model.49

The corresponding atomistic force field approach for PSS and

PDADMA and the corresponding simulation protocol are dis-

cussed in Ref. 10. Both the martini classic ion and refIon

force fields are used in separate simulations. In all simula-

tions, the refPOL water model (∼2000 beads) is used to solvate

the counterions and the polyelectrolyte. Each system is equili-

brated for 60 ns in the NVT ensemble, and another 90 ns in the

NPT ensemble at a time step of ∆t = 10 fs (see also Ref. 10,

supplementary material). The production runs span 250 ns

at ∆t = 20 fs.

F. Simulation of POPC lipid bilayers in the presence
of various salt concentrations

The system consists of a lipid bilayer of POPC (1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), solvated by

aqueous salt solutions of different initial ion concentrations of

c = 0 mol/l to 0.25 mol/l. Fluctuations of the box size caused a

slight increase in the salt concentration range up to∼ 0.3 mol/l.

For comparison, both the refIon model and classicmartini ions

were used in separate simulations along with the refPOL water

model. The force field parameters for POPC as well as the

starting configuration of a pre-equilibrated DPPC (dipalmi-

toylphosphatidylcholine) membrane consisting of 128 DPPC

molecules were taken from the martini webpage.22 A corre-

sponding exchange of the bead types for those corresponding

to POPC then yields a starting configuration for the simula-

tions. The initial volume of the rectangular simulation box is

V = (6.31×6.46×12.05) nm3. Simulations were conducted in

the NPT ensemble using a semi-isotropic Parrinello-Rahman

barostat, allowing volume fluctuations in the directions paral-

lel to the membrane only. The structures were equilibrated for

at least 250 ns, followed by the production runs of 1.0 µs for

each salt concentration.

V. RESULTS

In Sec. V A, we present numerical results for target quan-

tities of our parameterization procedure in addition to out-

comes concerning the aforementioned test cases. First, we

show the concentration-dependent mass density and relative

permittivity of an aqueous salt solution employing the refIon

force field. The data are compared to the results obtained

from the classic martini ion force field.2 We then discuss

the local structure of the investigated aqueous ionic system,

comparing the coarse-grained refIon force field to atomistic

data. We also compare the distribution of our ion model

around a stiff charged rod to results obtained from the PB

cell model and the MO counterion condensation theory. In

order to highlight the applicability of our approach, we also

study the counterion coordination number around dilute PSS

and PDADMA chains in aqueous solution. Finally, we analyze

the area per lipid of a POPC membrane at salt concentra-

tions up to c ≃ 0.3 mol/l, while also comparing both the

refIon and the classic martini ion model to results of atomistic

simulations.53

A. Mass density of aqueous salt solutions

An aqueous salt solution is simulated at different initial

concentrations ranging from c = 0.1 mol/l to c = 2 mol/l.

After equilibration in the NPT ensemble, the maximum con-

centration reads c ≃ 2.4 mol/l. The mass density is calculated

by ρ = N · m/〈V〉 with the total number N and mass m of

the martini beads divided by the average volume 〈V〉 of the

simulation box. Figure 3 shows the concentration dependence

of the mass density of aqueous salt solutions in two differ-

ent cases, (i) refIon model (green squares) and (ii) classic

martini ions2 (orange circles), both simulations employing the

martini refPOL water. Both data sets are in good agreement

with experimental data for aqueous sodium chloride solu-

tions54 (maximum deviation ≃ 2 % for standard martini ions
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FIG. 3. Mass densities of the aqueous salt solutions with respect to the molar

salt concentration: comparison of the refIon model (green squares) and clas-

sic martini ions (red circles) with experimental data54 (black crosses). Both

simulations employ the refPOL water model. The error margin is in the third

digit and thus within symbol size.

and <1 % for the refIon model). Using the polarizable ion

model thus yields only a small but visible improvement. How-

ever, the slope of the curve matches the experimentally mea-

sured values slightly better when using the polarizable ion

model. For concentrations up to c ≃ 1.5 mol/l, the increase in

density caused by adding ions to the solution is reflected very

accurately by the refIon model, while it is slightly overesti-

mated by the classic martini ions. For higher concentrations

(c ≥ 2.5 mol/l), both force fields seem to become increasingly

inaccurate. This finding can be explained by ion pairing effects,

which cannot be accurately taken into account by coarse-

grained force fields due to the large excluded volume of the

involved beads. However, such high salt concentrations often

do not reflect physiological conditions such that our ion force

field remains valid up to moderate and biologically relevant

concentrations. Further results regarding classic martini ions

in non-polarizable water2 also highlight the crucial influence

of the underlying water model. As shown in the supplemen-

tary material, one can observe even more significant devia-

tions to experimental results when using the simple P4 water

model.

B. Einstein-Helfand analysis: Relative dielectric
permittivity and ionic conductivity

The dipolar MSD data calculated from analysis of the

current autocorrelation function were analyzed according to

the Einstein-Helfand method as described in Sec. III B. From

this analysis, we extracted both the static relative permittiv-

ity ǫ r and the zero-frequency ionic conductivity σEH, which

are displayed in Fig. 4. The ionic conductivity represents a

robust handle on the dynamic properties of ions, as it takes

into account both single particle dynamics and correlation

effects between ions.36 For the comparison with experimental

results, we used an empirical fitting curve55 for the permittiv-

ity, whereas all experimental data for the ionic conductivity

are taken from Ref. 54. Figure 4 also shows part of the fit-

ting procedure (left-hand side). The fit results are shown for

all fitting windows in the interval of tc ∈ [0, 300] ps and

for all investigated concentrations. Vertical lines indicate the

choice of range for averaging the fit results to yield the final

value for both ǫ r and σEH at each concentration (solid lines

for the refIon model, dotted lines for the standard martini

ions). For the polarizable ions, we averaged over all windows

with tc ∈ [75, 125] ps; for the classic martini ions, we aver-

aged over all windows with tc ∈ [100, 150] ps. The standard

deviations are used as errorbars in the figures on the right

side.

As can be seen for the refIon force field, the data exhibit

improved agreement between the simulation and experiment

for ǫ r when compared to the classic martini ion force field.

While the qualitative behavior of the refIon salt solution

FIG. 4. Relative permittivity ǫr and

Einstein-Helfand ionic conductivity

σEH: simulation results of both the

classic martini ions (red lines and

circles) and the refIon model (green

lines and squares). The left-hand

side shows the results for all inves-

tigated concentrations and fitting

windows placed within the interval

of [0 ps; 300 ps] (also see Sec. III B).

Different concentrations are depicted

using different line styles according

to the legend. The averaging ranges

to yield the right-hand side results are

marked with vertical solid and dotted

lines for the refIon and classic ion

model, respectively. The right-hand

side shows ǫr and σEH plotted over the

molar salt concentration. The standard

deviation of the averaging process is

used as errorbars, which are most often

within symbol size. Black lines and

crosses depict experimental reference

data from Ref. 54.
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still deviates from the empirical fitting curve, it is able to

yield quantitatively meaningful results up to concentrations

of 2 mol/l. Specifically, the slope of the ǫ r curve is matched

better by the refIon force field, which has been demonstrated

to also play a significant role in correctly describing trans-

port phenomena in concentrated polyelectrolyte solutions.56,57

Moreover, the corresponding results for the ionic conductiv-

ity reveal a significantly better agreement of our new force

field for c ≥ 1.5 mol/l, which is of specific importance for

charge transport studies and highly concentrated polyelec-

trolyte solutions.10,14 In consequence, we can conclude that

electrostatic interactions are significantly overestimated when

using the classic martini ions, even for low salt concentra-

tions. Moreover, the refIon force field shows greater con-

sistency in the increase of the ionic conductivity for higher

salt concentrations. Consequently, the introduction of effec-

tive concentrations and thus scaling factors — as it was

discussed14 for the classic martini ions — can be avoided

with our approach. Therefore, a reasonably accurate qualita-

tive agreement between simulation and experimental data on

ionic conductivities for concentrations up to 2 mol/l can be

achieved.

C. Ionic diffusion and Nernst-Einstein conductivity

Using the simulation trajectories produced during the

Einstein-Helfand fitting procedure, we extracted diffusion

coefficients for the PNA and PCL beads for all investigated

concentrations. The diffusion coefficients were calculated

from the diffusional MSD of the central bead of each parti-

cle, using a fitting window of [2000, 5000] ps. Furthermore,

the Nernst-Einstein conductivities were calculated from the

diffusion coefficients according to the method described in

Sec. III C in order to see differences to σEH and to assess the

effects of ionic correlations. All data along with experimental

reference data are shown in Fig. 5.

In the simulation, increasing concentrations lead to a

strong decrease in ion diffusivity, which is not observed in

the experiment (Fig. 5, top). The force field further fails to

reproduce the differences in cationic and anionic behavior.

In further disagreement with experimental findings, the data

show slightly slower dynamics for the PCL model (dashed

line in Fig. 5, top) than for the PNA model (solid line). This

can be attributed to the stronger satellite charges implemented

in the PCL model, which stabilize its surrounding hydration

shell with refPOL beads and, therefore, increase its effec-

tive hydrodynamic radius. It should be noted though that

the refIon model by design is not able to accurately repre-

sent such differences between anionic and cationic species,

as the effective bead sizes are uniform. However, even the

corresponding experimental results are poorly understood.

Besides molecular polarization effects,58 it was recently dis-

cussed that also charge-transfer processes between the water

molecules and the ions may play an important role.59,60

Hence, such effects are not included in our coarse-grained

model.

The bottom panel in Fig. 5 shows a comparison of

Nernst-Einstein conductivities (no ionic correlation effects)

to Einstein-Helfand conductivities, which include all correla-

tions (also see Sec. V B). For low concentrations, both values

FIG. 5. Top: Concentration dependent diffusion coefficients for the PNA and

PCL refIon models (filled and empty squares, respectively) as well as experi-

mental values54,55 (black crosses for Na+, black stars for Cl−). Bottom: Values

for the Nernst-Einstein conductivity (empty squares) compared to the Einstein-

Helfand conductivity (filled squares) as well as experimental results (black

crosses). The right-hand scale applies to ∆ (empty triangles), which quantifies

ion correlation effects. All error bars are within symbol size.

are quantitatively comparable. For increasing concentrations,

however, the Einstein-Helfand-derived values are significantly

closer to the experimental values but seemingly go into sat-

uration for c ≥ 1.5 mol/l. The collectivity of ionic motion is

quantified by the phenomenological correction factor∆ (empty

triangles, associated with the axis on the right side). As can be

seen, the data hint to strong correlation effects between ions

for increasing concentration, i.e., an increased formation of

ion pairs at higher concentrations, as it has also been discussed

in Ref. 14. A further comparison between the classic martini

and the refIon model in combination with refPOL water beads

concerning diffusion coefficients and ionic conductivities is

presented in the supplementary material.

D. Structural properties: Radial distribution functions

In order to study the local structure of the coarse-grained

ion models, we calculated the pairwise radial distribution func-

tion (RDF) as well as the potential of mean force (PMF)

between pairs of the species PNA–PCL, PNA–PW, and PCL–

PW and compared the results to the corresponding outcomes of

atomistic simulations (see Fig. 6). The PMFs were calculated

by using the relation PMF = −RT log g(r), where R denotes

the universal gas constant. In the case of the refIon (PNA, PCL)

and refPOL (PW) models, the central particles were used as the

reference group. In the cases of Na+ −Cl− and Cl−–water, the
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FIG. 6. Radial distribution functions g(r) (RDFs) and potentials of mean force (PMFs) for all particle combinations between Na, Cl, and water. Data for the

martini refIon model are compared to atomistic data obtained using the Kirkwood-Buff force field.47,48 The data sets of the highest and lowest concentration

are shown in each plot.

first peak of the coarse-grained RDF coincides with the sec-

ond peak of the atomistic RDF, which supports the notion of

an included first hydration shell in the ion model, and demon-

strates its ability to model the behavior of solvent-separated

ion pairs. A comparable behavior was also discussed for clas-

sic martini ions in a previous publication.10 In consequence,

the height of the peaks in the RDFs is not comparable with

atomistic simulation results. Although the differences between

anions and cations are less pronounced when compared to the

atomistic results, a slight difference in hydration behavior of

the coarse-grained ions becomes evident. Noteworthy, bulk

behavior with g(r) ≃ 1 is reached for all coarse-grained RDFs

at distances r ≥ 2 nm, which are significantly higher values

compared to atomistic results. The underlying reason can be

attributed to the large diameters of the spherical martini beads

such that excluded volume effects are overestimated.10 This

is also the reason for the increased correlation length between

the peaks in the refIon model when compared to the all-atom

simulations. Additional results for classic martini ions in both

polarizable and non-polarizable water are shown in the sup-

plementary material, where they are directly compared to the

refIon model as well as atomistic simulations. The data show

only little difference between all three martini force field com-

binations, and they all yield very similar results regarding the

local structuring behavior of water and ions as indicated by the

respective RDFs.

E. Ion distribution around a rod-like polyelectrolyte

The radial distribution functions for refIon counterions

(PCL in green and PNA in red color) in refPOL water around

uniformly charged rod-like polyelectrolytes with a number of

charged groups Nion = 14 are shown in the top of Fig. 7.

One can identify three counterion layers, which differ only

marginally for the individual ion species.

For the PB comparison, we chose the radius of the rod

to be r0 = 0.368 nm, in correspondence to the distance of the

closest approach between the charged rod and the counterions

(see also RDF in Fig. 7, top panel). This yields the Manning

parameter ξ ≃ 1.43, prefactor γM ≃ 0.66, and Manning radius

RM ≃ 0.889 nm. Since ξ > 1, the presence of condensed coun-

terions becomes evident.37,38 Using Eq. (11), the fraction of

condensed counterions is θ ≃ 0.30. Regarding the value for

the Manning radius, one can thus assume that the correspond-

ing counterion shells in Fig. 7 up to distances of RM can be

associated with condensed counterions.

The cumulative number gcn of counterions with the

counterion number density ρc in 2D can be evaluated with

gcn(r) = 2πlrod ρc

∫ r

0

dr ′r ′g(r ′) (14)

with lrod being the length of the rod-like polymer, which cor-

responds to the box vector length. Renormalizing the above

function by the number of counterions N = 14 in the sys-

tem then yields the fraction of counterions θ(r) that are found

within a distance r around the charged rod. The correspond-

ing results are shown at the bottom of Fig. 7 in combination

with the analytic expression from Eq. (13). In fact, at dis-

tances of r = RM = 0.889 nm, one can identify gcn ≃ 3.66

and gcn ≃ 3.98 for PNA and PCL counterions, respectively,

which roughly corresponds to the expected number of con-

densed counterions θ · Nion ≃ 4.26. Hence, the corresponding
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FIG. 7. Radial distribution functions g(r) of counterions around the charged

rod (top) and fraction of counterions θ(r) found within a distance r around the

charged rod (bottom). Results are shown for both positively (green lines) and

negatively charged rods (red lines) with refIon counterions in combination

with the refPOL water model. The dashed black line shows θ(r) calculated

from the PB cell model theory [Eq. (13)].

refIon force field in combination with the refPOL water model

accurately reproduces the properties of highly charged systems

at larger distances, also in agreement with the outcomes of the

PB cell model approach [Eq. (13)]. The corresponding devia-

tions to Eq. (13) at short distances can be attributed to the large

spherical size of the counterions in combination with the ref-

POL beads. Nevertheless, an excellent agreement with analytic

results can be observed at distances r ≥ 2 nm. Here, the radial

distribution function approaches unity, which reveals the onset

of bulk behavior, and highlights the good coincidence with

mean field electrostatic theory, where the excluded volume

of particles has negligible influence. Consequently, our model

accurately reproduces the expected electrostatic behavior of

the system, which verifies our approach.

Moreover, slight differences can be observed between

positively and negatively charged counterions, which can be

attributed to the aforementioned differences in the hydration

behavior. In summary, the data show that the refIon model

does not overestimate agglomeration around charged groups

and behaves as expected in aqueous solution. It is therefore

assumed that the refIon model accurately reproduces elec-

trostatic interactions within the limits of the martini force

field.

F. Ion distribution around PSS and PDADMA

In order to study the properties of more realistic

polyelectrolytes, we evaluated the number of counterions

FIG. 8. Snapshots of a PSS chain with Na+ counterions (right side) and a

PDADMA chain with Cl− counterions (left side) in aqueous solution. Sodium

counterions are represented as blue spheres, whereas chloride ions are green

spheres.

in the first coordination shell around positively charged

poly(diallyldimethylammonium) (PDADMA) and negatively

charged poly(styrene sulfonate) (PSS) chains. As described

in Sec. IV E, we focused on dilute solutions of single poly-

electrolyte chains with 30 charged monomers and the corre-

sponding number of counterions in the absence of excess salt.

Moreover, we compare the outcomes of the refIon (system I)

and the classic martini ions (system II) in combination with

the refPOL water model with results from atomistic simula-

tions with the OPLS/AA force field (system III) in combination

with the SPC/E water model. A snapshot of the corresponding

martini systems is shown in Fig. 8.

The first counterion shell coordination numbers around

the individual charged monomers

NMI(r1st) = 4πρc

∫ r1st

0

dr ′r ′ 2g(r ′) (15)

for counterions and beads including sulfur- (PSS) and

nitrogen-atoms (PDADMA) are shown in Fig. 9.

The corresponding data for r1st (Table III) denote the dis-

tance of the minimum for the radial distribution function after

the maximum peak height. In fact, the values for r1st reveal

a good agreement between all systems. The deviations are

within the second digit. However, as it was already discussed

in Ref. 10, the first counterion coordination shell for the atom-

istic models around PSS is located at distances r1st = 0.41 nm,

FIG. 9. Coordination numbers NMI(r) of the first coordination shell between

cations and monomers of PSS (red bars) and between anions and monomers

of PDADMA (blue bars) for the refIon and the refPOL model (system I),

the standard martini ion model and the refPOL water model (system II), and

an atomistic OPLS/AA model in combination with the SPC/E water model

(system III). More details can be found in the text and in Table III.
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TABLE III. Details on the chosen systems and corresponding distances for

coordination numbers in the first counterion shell around monomers of PSS

and PDADMA.

Polyelectrolyte/ r1st

counterion System Ion model Water model (nm)

PSS/Na+ I refIon refPOL 0.61

PSS/Na+ II Standard martini refPOL 0.61

PSS/Na+ III OPLS/AA SPC/E 0.65a

PDADMA/Cl− I refIon refPOL 0.58

PDADMA/Cl− II Standard martini refPOL 0.60

PDADMA/Cl− III OPLS/AA SPC/E 0.62

aDistance for the second counterion coordination shell. The first coordination shells end

at r = 0.41 nm.

which is within the martini bead diameter. Hence, for PSS,

we used the corresponding distance for the second counte-

rion shell of the atomistic simulations for our analysis (system

III), which is found to be in good agreement with the first

coordination shell of the martini models.

The corresponding values for NMI(r1st) highlight a qual-

itative agreement between the individual force field com-

binations. As can be seen, the lower tendency of counte-

rion association for PDADMA when compared with PSS is

represented by all models. Furthermore, it has to be noted

that the values of the atomistic model (system III) may

not necessarily imply a good agreement with experimental

results, as the model was developed for dense PSS/PDADMA

complexes.

G. Area per lipid of a POPC lipid bilayer in aqueous
salt solution

The area per lipid Alipid of a POPC bilayer is calculated

from simulation data using the average dimensions of the sim-

ulation box in the x- and y-direction, as the membrane’s normal

vector is set up to be parallel to the z-axis. Thus, the area per

lipid is defined as

Alipid = 2
〈x〉 · 〈y〉

Nlipid

, (16)

where 〈x〉 and 〈y〉 are the respective average box lengths in

the x and y direction during the simulation and Nlipid/2 is the

amount of molecules forming one half of a lipid bilayer. In

Fig. 10, we show the calculated area per lipid for different

molar salt concentrations. The refPOL water model was used

to yield comparable data using both the classic martini ions

(red circles) and the refIon model (green squares). The results

of atomistic simulations performed by Böckmann et al.,53

which are used as reference data, are shown in black. Our

results show that without salt (c = 0 mol/l) the agreement

between martini simulations and the atomistic reference data

is excellent. With both models, the experimentally measured

area per lipid (Alipid = (0.65± 0.03) nm2)53,61 is indeed repro-

duced. However, neither of the martini ion force fields is able

to reproduce the considerable decrease in Alipid with increasing

salt concentration as observed in the reference data. Despite

this quantitative disagreement, we can observe a smaller value

of Alipid for higher salt concentrations in both martinimodels,

which reproduces the trend of the atomistic simulation results.

FIG. 10. Area per lipid Alipid of a POPC bilayer solvated by NaCl(aq) solution

using classic martini ions (red circles) and the refIon model (green squares).

Reference data from atomistic simulations are taken from Ref. 53 and are

depicted in black.

Due to the results of our new model being roughly compara-

ble with the classic martini ions, it can be assumed that the

observed deviations to atomistic reference data can be mainly

attributed to the immanent properties of coarse-grained force

fields, like large bead diameters and spherical shapes. Note-

worthy, and in agreement with the results of our coarse-grained

simulations, a recent publication also reported on experiments

proving the influence of low salt concentrations on the struc-

tural properties of certain lipid bilayers to be negligible.62 The

atomistic reference data produced by Böckmann et al.53 (see

also Fig. 10) were reported to overestimate the salt concen-

tration by orders of magnitude and therefore also strongly

overestimate the changes in the area per lipid. In summary,

our new ion force field does not induce any spurious artifacts

such that it can also be used for the simulation of net-uncharged

lipid bilayers in salty solution.

VI. SUMMARY AND CONCLUSIONS

We have shown that the new refIon force field described

in the present work shows improved behavior over the previ-

ous martini ion model. While the solution density and area

per lipid of a POPC lipid bilayer are very similar to a system

using the classic ion model when employing the refPOL water

force field, the electrostatic permittivity of the system is much

closer to experimental data without applying scaling factors

for the salt concentration. Hence, the polarizability of our ion

and water system shows an improved static behavior when

compared to experimental results. Moreover, an investigation

of ionic conductivities also shows that our refined model yields

better results when compared to the old ion model, which are

at least at low concentrations almost quantitatively correct.

The test case of a charged rod demonstrates that the model

largely behaves as predicted by standard electrostatic theories

in good agreement with previous simpler coarse-grained mod-

els including an implicit solvent approach.20 We can therefore

safely conclude that the refIon model does not compromise

the functionality of the martini force field but improves the

agreement between simulation and experimental outcomes

regarding the electrostatic response of a system containing

simple monovalent salts as components.
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Nevertheless, it has to be noticed that general limitations

for coarse-grained ion models exist. For instance, the incor-

poration of specific ion effects and complex molecular ions is

rather complicated, even for atomistic models, such that our

and further martini ion models most often fail in order to study

such effects.18,63,64 Moreover, also extremely highly charged

systems, leading to phenomena like strong electrostatic cou-

pling, cannot be sufficiently reproduced by our approach.19

This can be mainly attributed to the large size of the ions in

combination with the semi coarse-grained resolution of water

molecules. Further limitations also include the dielectric prop-

erties of electrolyte solutions at interfaces,65 where it can be

expected that certain deviations to experimental and atom-

istic simulation data can be observed. However, for standard

applications of the martini model, the refIon in combina-

tion with the refPOL force field can be regarded as a useful

approach.

The polarizable ion force field, which can be downloaded

from the martini webpage,22 therefore is regarded as suit-

able for modeling electrolyte solutions and is potentially use-

ful for moderate and highly charged systems, where precise

electrostatic interactions are crucial.

SUPPLEMENTARY MATERIAL

See supplementary material for more results regarding

the comparison between standard martini ions and the refIon

model.
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